Bode-diagram kézi rajzolása

A VIK Wikiből
A lap korábbi változatát látod, amilyen Hryghr (vitalap | szerkesztései) 2013. április 3., 17:23-kor történt szerkesztése után volt. (Hryghr átnevezte a(z) Bode diagram rajzolása, amikor nincs kéznél matlab lapot a következő névre: Bode-diagram kézi rajzolása: lényegretörőbb cím, +kötőjel)

A Bode-diagram kézi rajzolása több tantárgyból is előjöhet. Ehhez nyújt segítséget az alábbi leírás, melyet Ndroo készített Keviczky-féle Szabályozástechnika-könyv és a BodePlots.pdf alapján

A Bode-diagram készítésének lépései

  1. Átviteli függvény átalakítása: Ha a feladatban ehhez hasonló alak van: , akkor át kell alakítani ilyen alakká: . Először a számlálót és a nevezőt is szorzattá kell alakítani, aztán annyit emelünk ki, hogy az s nélküli tagok értéke 1 legyen: . Így minden tényező alakú lesz; ha eleve így adták meg, akkor ezt a lépést ki kell hagyni.
  2. Pólusok/zérusok felírása: Zérusok: azok a helyek ahol a számláló értéke 0 lesz, pólusok: azok a helyek, ahol a nevező értéke lesz 0. Minden szorzatalakra fel kell írni a következőt: , itt lesz a számláló/nevező értéke nulla, pl.: az egyik pólus, a többi: -nél, -nál van, a zérus: -nél van.
  3. Fel/letörés: Ez az amplitúdó-körfrekvencia görbéhez kell (a dB-es). A pontok, ahol a görbe fel/letörik: alakból vagy s abszolútértéke, vagy értéke (a kettő abszolútértékben ugyanaz, úgy számold ki, ahogy jól esik). A görbe feltörik, ha zéruson megy át, ilyenkor a meredeksége 20dB/dekáddal nő (a függvény meredekéségét magasabbra rajzolod), illetve letörik, ha póluson megy át, a meredeksége itt 20dB/dekáddal csökken.
  4. A görbe kezdő meredeksége: ezt az integrátorokból (szimpla s szorzótagok az átviteli függvényben) nézhető meg, ha nincs ilyen: a meredekség 0, a görbe vízszintesen indul, ha egy van (egyszeres integrátor): -20dB/dekád a kezdő meredekség, ha kettő van, azaz van (kétszeres integrátor): -40dB/dekád. A fenti példában egyszeres integrátor van, azaz -20dB/dekád a kezdő meredekség.
  5. Az x tengely metszésének pontja: (vágási körfrekvencia, ): ezt a meredekség és az átviteli függvény szorzókonstansa (K) határozzák meg: ha a görbe meredeksége 0dB/dekád akkor nem metszi az x tengelyt (mert vízszintesen halad), ha -20dB/dekád, akkor K-nál metszi, ha -40dB/dekád, akkor -nál. Az egyes fel/letörések miatt úgy lehet nyomon követni, hol lesz a metszés helye, hogy megnézzük az integrátorokat/a kezdő meredekséget: ha K-ig nem változik a görbe meredeksége, akkor a meredekségnek megfelelően metszi (pl: egyszeres integrátor, K=5, ekkor -20dB/dekádos meredekséggel megy át az x tengelyen 5-nél), ha előtte megváltozik, akkor annak megfelelően (pl: kétszeres integrátor, K=16, 2-nél feltörik, ekkor 2-ig -40dB/dekád a meredekség, a tengelyt -nál metszené, de a feltörés miatt 2 után -20dB/dekáddal metszi az x tengelyt 16-nál.). A fenti példában K=2, egyszeres integrátor, -1-nél letörés van, ezért -40dB/dekád meredekséggel a pontban metszi.
  6. Amplitúdó-körfrekvencia görbe felrajzolása: (könyv: 88. old.) Itt az eddigieket kell összegyúrni eggyé, előbb bejelölöd a pontokat, ahol történik valami, majd utána rajzolod meg a görbét, az y tengelyen , az x tengelyen értékével.
%ATTACHURL%/pic1.JPG
  1. Fázisgörbe értéke: (ez a másik görbe, a -s, rendes nevén: fázis-körfrekvencia görbe) a görbéhez képzeljünk el sávokat, ahol 90° a lépték az egyes értékek közt. A fenti fel/letöréseknek megfelelően változik, ha feltörik, akkor az érték nő 90°-al, ha letörik, akkor csökken 90°-al. Viszont ez nem egyik pillanatról a másikba megy végbe, hanem "átmenetszerűen", rajzban ez azt jelenti, hogy fel/letörésnél már félúton van az új állapot felé, lásd kép: %ATTACHURL%/pic2.JPG
  2. Fázisgörbe kezdőértéke: ez az integrátorok, és az átviteli függvény szorzókonstansán múlik: a konstans ha pozitív, akkor 0° a kezdőérték, ha negatív, akkor -180°, az integrátor(ok) miatt 0-ban -90°-al jobban változik (-180°-al, ha kétszeres), illetve, ha a számlálóban volt egy szimpla s tag, akkor az 90°-al növeli. Pl: konstans negatív, egyszeres integrátor: -180°+(-90°)=-270°, konstans pozitív, számlálóban egy szimpla s: 0°+90°=90°. A fenti példában konstans pozitív, egyszeres integrátor: 0°-90°=-90°.
  3. Fázistöbblet meghatározása: (könyv: 190-191. old) fázistöbblet fázis-körfrekvencia görbe értékének különbsége -180°-tól a vágási körfrekvenciánál. Azaz ahol a dB-es görbe metszi az x tengelyt, ott megnézed a -s görbe értéke mennyire tér el a -180°-os vonaltól. Ezt a meredekség határozza meg mekkora lesz: ha -20dB/dekáddal metszi az x tengelyt: a fázistöbblet biztosan pozitív (lásd könyv: 191.old 5.35 ábra), ha -40dB/dekáddal metszi: a fázistöbbletet nem lehet meghatározni biztosan, olyat rajzolsz, mint az 5.36-os ábrán, ha -60dB/dekáddal metszi: a fázistöbblet biztosan negatív, ekkor a 180°-os vonal alatt megy el. A fenti példában -40dB/dekád meredekséggel a pontban metszi az x tengelyt a dB-es függvény, ezért a fázistöbbletet nem tudjuk meghatározni biztosan, a stabilitás határhelyzetében van.
  4. Fázis-körfrekvencia görbe felrajzolása: lásd ábra: %ATTACHURL%/pic3.JPG
  5. Stabilis-e a rendszer: vagy azt nézed, hogy a fázistöbblet pozitív-e, vagy azt, hogy a jobboldali számsíkon van-e pólus: ha nincs, akkor stabilis.
  6. Statikus hiba: megnézed az integrátorok számát, az adja a típusszámot, és azt a sort írod le a táblázatból (140. oldal).


Típusszám 0 1 2
egységugrás 0 0
sebességugrás 0
gyorsulásugrás

0 jelentése: hiba nélkül követi jelentése: nem tudja követni


Egy másik jó leírás: Nyquist, Bode