Fizika1 vizsga 2008.01.30
Kifejtős kérdések
max. 15 pont, feladatonként 3 pont
- Milyen tulajdonságai vannak egy ideális gáznak?
- ?
- Írja le a Carnot körfolyamat hatásfokát!
- Mondja ki és vezesse le Steiner tételét!
- Fejtse ki és vezesse le Gauss tételét!
Igaz-hamis kérdések
max. 15 pont, jó válasz: 1p, nincs válasz: 0p, rossz válasz: -1p
- A gyorsulás nagysága független az inerciarendszer rendszer megválasztásától.
- A tömegpont lendülete függ az inerciarendszer megválasztásától
- Newton 3. axiómája szerint az erő és a reakcióerő összege zérus, ezért nincs gyorsulás.
- A munka a teljesítmény-idő görbe alatti terület.
- A Coriolis erő merőleges a test sebességére
- A tömegközéppont koordinátái mindig pozitív számok.
- A hőtan harmadik főtétele szerint az abszolút nulla fok véges számú lépésben elérhető
- Tömegpontrendszer tömegközéppontjának sebessége belső erők segítségével is változtatható.
- Tömegponrendszer perdülete állandó, ha a pontrendszerre időben változatlan forgatónyomaték hat.
- A Carnot-féle körfolyamat során a belső energia maximumának és minimumának aránya az izoterm folyamatok hőmérsékletének aránya.
- Az entrópia két rendszer egyesítésénél kiegyenlítődik.
- Az ideális gáz részecskéi között vonzóerő hat.
- A fajhőviszony nem lehet egynél kisebb.
- Az ekvipartíció törvénye szerint gázkeverékben a kripton atomok átlagban lassúbbak a héliumatomoknál.
- A termodinamikai valószínűség egyensúlyi állapotban a legnagyobb.
Megoldás
non-official
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I I H I I H H H H I H H I I I
Feladatok
max. 20 pont, jó: 2,5p
- 1. Egy részecske helyzetvektora r(t)= 3t2 i + 4t2 j + 7 k. Mekkora utat tesz meg az első 11 másodperc alatt?
- A: 255m
- B: 355
- C: 555
- D: 605
- E: Egyik sem
- 2. Egy kerékpáros 20m sugarú körpályán 10 m/s állandó nagyságú sebességgel halad. A függőlegeshez képest mekkora szöggel kell dőlnie?
- A: tg φ =0,1
- B: tg φ =0,2
- C: tg φ =0,5
- D: tg φ =0,8
- E: Egyik sem
- 3. Egy ω= 11 k 1/s szögsebességgel forgó korongon 0,2 kg tömegű test halad v= 3 i + 5 j m/s sebességgel. A ráható Coriolis-erő
- A: 12 k N
- B: 40 i - 24 j N
- C: 22 i - 13,2 j N
- D: ?
- E: Egyik sem
- 4. Csigán átvetett fonál egyik végén 1kg, másik végén 2kg tömeg függ. A fonálban ébredő erő a gyorsuló mozgás alatt
- A: 10,3 N
- B: 13,3 N
- C: 20,3 N
- D: 30,3 N
- E: Egyik sem
- 5. Egy 100 literes edényben lévő ideális gáz tömegét 1kg-mal csökkentve a nyomás 1 MPa-lal csökken. Mekkora a gáz sűrűsége 10MPa nyomáson?
- A: 25kg/m3
- B: 100kg/m3
- C: 125kg/m3
- D: 85kg/m3
- E: Egyik sem
- 6. Egy 110l térfogatú ballonban 0,8kg hidrogén (M= 2g) és 1,6kg oxigén (M= 32g) van. T= 20°C Mekkora a keverék nyomása?
- A: 50kPa
- B: 500kPa
- C: 1MPa
- D: 10MPa
- E: Egyik sem
- 7. Mekkora a termondinamikai valószínűsége annak a 8 részecskéből álló rendszernek, amelynek makroeloszlása
- 0 2 1 0 2 3 ?
- A: 0,6
- B: 96
- C: 1680
- D: Egyik sem
- 8. Mennyi adiabatikus munkavégzéssel lehet 1 kg oxigéngázt (M= 32g) 20˚C-ról 500˚C-ra melegíteni?
- A: 312 kJ
- B: 254 kJ
- C: 203 kJ
- D: 114 kJ
- E: Egyik sem
Megoldás
non-official
1 2 3 4 5 6 7 8 D C C B B D C A
1.
A megtett út a sebesség nagyságának (a sebességvektor abszolút értékének) az integrálja (a sebességvektor integrálja lenne a helyvektor megváltozása). A sebességvektor a helyvektor deriváltja: , ennek abszolútértéke: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle |v|=\sqrt{(6t)^2+(8t)^2}=|10t| } , ennek integrálja Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_0^{11} |10t| dt=605 }
2.
A körmozgás dinamikai feltétele szerint a normális irányú gyorsulás a kerületi sebesség négyzete osztva a körpálya sugarával: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_n=\frac{v^2}{r} } , valamint ha a sebesség állandó, akkor a tangenciális irányú gyorsulás nulla. Ez alapján a kerékpárosra ható eredő erő Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F=m\frac{v^2}{r} } , és a kör közepe felé mutat. Ha feltételezzük, hogy nem a súrlódás tartja a pályáján, akkor az úttestnek lejtenie kell a kör közepe felé. Ha felveszünk egy, a pályára merőleges síkot, és berajzoljuk a kerékpárosra ható erőket, akkor lesz a felületnek egy K nyomóereje (merőleges a felületre) és egy mg gravitációs erő; ezek eredője F kell legyen. Ha az úttest Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \varphi } szöggel tér el a vízszintestől (a kerékpáros pedig ugyanennyivel a függőlegestől), akkor az erők függőleges irányú komponensei: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K\cos\varphi - mg = 0 } (ugyanis függőleges irányban 0 az eredő erő), a vízszintes irányúak pedig: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K\sin\varphi = F = m\frac{v^2}{r} } , mert F az eredő erő. Ezekből kifejezve Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tan\varphi } -t: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tan\varphi = \frac{v^2}{rg}\approx 0.5 }
3.
A Coriolis-erő: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_C=2m(v\times \omega) } , ez alapján Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 22i - 13,2j } jön ki.
4.
A kötél nem nyúlik, tehát a két testre ugyanakkora K kényszererővel fog hatni, valamint a két test gyorsulása ugyanakkora (abszolútértékű) lesz (és ellenkező előjelű). Így: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m_1 a_1=m_1 g-K} , Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m_2 a_2 =m_2 g-K } , Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_1=-a_2 } Innen kifejezve K-t: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K=\frac{2g m_1 m_2}{m_1 + m_2}\approx 13.3N }
5.
Legyenek a gáz adatai kezdetben Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p_1,\; V_1,\; n_1 } , a tömeg és nyomás változása Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta m,\; \Delta p } , az egész folyamat közös hőmérséklete T, a gáz moláris tömege M, a nyomás, ahol sűrűséget mérünk Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p_x } , és itt a sűrűsége Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rho } . Így Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle p_1 V_1=n_1 RT } és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (p_1-\Delta p)V_1=(n_1-\frac{\Delta m}{M})RT } . Kivonva a két egyenletet és átosztva: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{M}{RT}=\frac{\Delta m}{V_1 \Delta p} } . A sűrűség: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rho=\frac{m}{V}=\frac{nM}{nRT/p_x}=p_x \frac{M}{RT} } , innen a sűrűség a kívánt nyomáson Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \rho=\frac{p_x \Delta m}{V_1 \Delta p}=100 \frac{kg}{m^3} }
6.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle V= 110 l = 110dm^3 = 0,11m^3}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T= 293K}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m_H= 0,8kg = 800g, M_H= 2g, n_H= \frac{m_H}{M_H} = 400mol}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m_O= 1,6kg = 1600g, M_O= 32g, n_O= \frac{m_O}{M_O} = 50mol}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_H= \frac{n_H*R*T}{V} = 8,8MPa}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P_O= \frac{n_O*R*T}{V} = 1,1MPa}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle P= P_H + P_O \approx 10MPa}
7.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{8!}{2!*1!*2!*3!} = 1680}
8.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f= 5}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle m= 1kg}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle M= 32g = 0,032kg}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_1= 293K}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle T_2=773K }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Q=0 }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta T= T_2 - T_1 = 480K }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta E= Q+W = W = \frac{f}{2}*\frac{m}{M}*R*\Delta T = \frac{5}{2}*\frac{1}{0,032}*8,314\frac{J}{molK}*480K=311775J=311,775kJ\approx 312kJ }
-- ijanos - 2008.01.30.
-- Balázs - 2008.01.31.
-- Verne - 2009.01.05.
-- csakii - 2010.01.19.
-- Hump - 2011.01.13.
-- Boci - 2011.01.14.
-- Lord Viktor - 2013.01.25