Matematika A1 - Vizsga: 2007.01.02
1. Mely z komplex számokra teljesül az alábbi feltétel?
A megoldás menete: z-t algebrai alakban felírva: z = a+b*i
2. Határozza meg a következő határértékeket!
a, feladat
Megoldás -- Hanci - 2007.01.04.
A megoldás menete: nevezetes határértékre való visszavezetés
legyen m=n^3, n->végtelen, akkor n^3=m->végtelen
b, feladat
Megoldás -- Hanci - 2007.01.04.
A megoldás menete: a^n alakra visszavezetés
A hatványalap határértéke:
A hatványalap tart az 1/3-hoz , n->végtelen, (1/3)^n -> *0*
b, feladat 2. megoldása (ha a 0*0 alak nem indefinite?!)
Megoldás -- Pogo - 2007.01.04.
Kiemelve: Mivel: és
c, feladat
Megoldás -- Hanci - 2007.01.04.
A megoldás menete: nevezetes határértékre való visszavezetés
A feladatban szereplő kifejezés felírható a köv. alakban:
Mivel 1/e < 1
3. Válaszolja meg a kérdést!
Megoldás -- Hanci - 2007.01.05.
A megoldás menete:
A 2 nem 0, valós, konstans szám -> egyszerűsíthetünk vele.
Az x^2 nem 0, valós (x tart a 0-hoz, de nem egyenlő vele) -> ezzel is egyszerűsíthetünk.
Az ln(x) nem 0, valós ( ln(x) tart a -végtelenhez, de nem egyenlő vele) -> ezzel is egyszerűsíthetünk.
Ezután vizsgáljuk meg, hova tart 2x^2 * ln(x), ha x -> 0+
Mivel "0" * "-végtelen" alakú a kifejezés, átalakítható "végtelen"/"végtelen" alakúra, ami után már gond nélkül alkalmazhatjuk a L'Hospital szabályt.
Miután beláttuk, hogy a részkifejezés 0-hoz tart, megvizsgáljuk az egészet.
4. Hol és milyen szakadása van a függvénynek?
Megoldás -- Pogo - 2007.01.05.
Megoldás menete:jobb bal oldali hat érték. A nevező nem lehet=0 mert mivel
Tehát csak x=0 ban van szakadás.
5. Válaszolja meg a kérdést!
Legyen f mindenütt deriválható függvény!
6. Konvergensek-e a következő improprius integrálok?