Fizika 3 - Vizsga, 2011.01.13.
Kiskérdések
1. Mekkora annak a fotonnak a hullámhossza, amely képes ionizálni a H atomot?
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E = 13,6 eV = h \nu = h \frac{c}{\lambda}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda = \frac{h c}{E} = ...}
2. Ha egy 1 eV energiájú foton ütközik egy szabad állapotban lévő elektronnal, akkor maximum mennyi energiát adhat át neki?
A beérkező foton energiájából megkapjuk a hullámhosszát:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E = 1 eV = h \nu_1 = h \frac{c}{\lambda_1}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda_1 = \frac{h c}{E}}
Nyilván Compton effektusos példa, maximális az energia átadás, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \theta = 180^o } , ebből kiszámolhatjuk a szóródott foton hullámhosszát.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Delta \lambda = \Lambda (1 - \cos \theta)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda_1 - \lambda_2 = \Lambda (1 - \cos \theta)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lambda_1 - \lambda_2 = 2 \Lambda}
Az energia megmaradásból megkaphatjuk az átadott energiát:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle h \nu_1 = h \nu_2 + E_{elektron}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle E_{elektron} = 1 eV - h \frac{c}{\lambda_2}}
3. Definició alapján egy szabadon mozgó elektron valószínűségi áramsűrásége
Ebbe:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \bar J = \frac{\hbar }{{2 \cdot m \cdot j}} \cdot \left( {{\Psi ^ * } \cdot \nabla \Psi - \Psi \cdot \nabla {\Psi ^ * }} \right)}
kéne behelyettesíteni a szabadon mozgó elektron állapotfüggvényét:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Psi (x,t) = \psi (x) \cdot \theta (t) = A \cdot {e^{j \cdot k \cdot x}} \cdot {e^{\frac{E}{\hbar } \cdot t}}}
Ez csak tipp, nem csináltam meg vizsgán.
4. Lineáris oszcilátor minimum 2eV energiájú fotont tud elnyelni, adja meg a 5eV energiaszinthez tartozó állapotfüggvény matematikai alakját.
a lépésköz 2 eV, a 0. állapot 1/2 hávonás omega, azaz 1eV, tehát az 5 eV a 2. állapot, ehhez tartozó függvény valami hermite polinómos módszerrel, vagy kitudja...
5. Mérés várható értékének értelmezése
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \langle A \rangle _{\phi} = \sum_{i=0}^\infty \left| a_i \right|^2 A_i = \sum_{i=0}^\infty \left| \langle \alpha_i , \varphi \rangle \right|^2 A_i}
Ahol a_i a fi A operátor sajátbázisbeli együtthatói, A_i pedig a sajátértékek. Meg talán a szép ábra is kell.
6. Ábrázolja szabadon mozgó részecske Vo potenciálgáton való áthaladási valószínűségét
Transzmissziós tényező grafikonja
Nem a Gamow közelítés, hanem a pontosabb kell, ami már figyelembe veszi a differenciál folytonossági kritériumot is. Valami ilyesmi az ábra:
7. Spin és pálya perdületének precessziós mozgásának körfrekvenciája
Larmour (a pályáé) és cikloton (spin) körfrekvencia
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_L = - \frac{e B}{2 m} }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_c = - \frac{e B}{m} }
8. Kiválasztási szabályok
Jó kérdés, mi ez egyáltalán?
9. Elektrongáz grafikonja T = 0 és T > 0 hőmérsékleten
10. Pauli mátrixok
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{S}_x = \frac{hvonas}{2} \left[ \begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array} \right] }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{S}_x = \frac{hvonas}{2} \left[ \begin{array}{rr} 0 & -j \\ j & 0 \end{array} \right] }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{S}_x = \frac{hvonas}{2} \left[ \begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array} \right] }
Nagykérdések
- A kvantummechanika posztulátumai
- Khi ASZ és Khi SZ spinpálya állapotok lehetséges értékei
- Vezesse le a perturbáció számítás elsőrendű közelítését 2 degeneráltságú állapot esetén.
- Kicserélési energia
- Bloch állapotok LCOA közelítéssel, 1D eset
- Szilícium kristály sávszerkezetének kialakulását mutató ábra, kötő és lazító pályákkal