Ez az oldal a korábbi SCH wikiről lett áthozva.
Ha úgy érzed, hogy bármilyen formázási vagy tartalmi probléma van vele, akkor, kérlek, javíts rajta egy rövid szerkesztéssel!
Ha nem tudod, hogyan indulj el, olvasd el a migrálási útmutatót.
_(1. Matematika B3, 2005.02.15., 1. lap, Andai Attila)_
*I. Adjuk meg paraméteresen az alábbi görbéket és felületeket.*
1. Az síkban lévő középpontú 2 sugarú körvonal.
2. A síkban lévő középpontú féltengelyű ellipszis .
- ,
3. A és az egyenletű felületek metszetgörbéje.
4. Az középpontú 5 sugarú gömb.
5. Az , síkbeli vezérvonalú, középpontú kúpfelület.
6. A vezéregyenesű 3 sugarú henger.
II. Mi lesz a görbe érintőjének az egyenlete a paraméternél?
III. Irjuk fel az alábbi vektormezők deriváltját, ahol adott vektor.
IV. Vonalmenti integrálok.
1. Mekkora a vektor-vektor függvény A = (0, 1) és B = (1, 0) pontok közötti vonalmenti integrálja, ha A-ból B-be egyenesvonal mentén, illetve, ha az origó középpontú kör negyedíve mentén integrálunk ?
2. Legyen és , ahol . Határozzuk meg az integrál értékét.
-- Ger****** - 2006.06.15.