Matematika A3 - Differenciálegyenletek: osztályozások és definíciók
Ez az oldal a korábbi SCH wikiről lett áthozva.
Ha úgy érzed, hogy bármilyen formázási vagy tartalmi probléma van vele, akkor, kérlek, javíts rajta egy rövid szerkesztéssel!
Ha nem tudod, hogyan indulj el, olvasd el a migrálási útmutatót.
%TOC{depth="3"}%
Definíció
A differenciálegyenlet olyan egyenlet, mely tartalmaz egy ismeretlen függvényt (szokásosan ) és annak deriváltjait.
Osztályozások
Közönséges - parciális differenciálegyenletek
Közönséges, ha az ismeretlen függvény egyváltozós, parciális, ha többváltozós.
Példák
Az első egyenlet közönséges, a második parciális.
Lineáris - nem lineáris differenciálegyenletek
Lineáris, ha nem szerepel az egyenletben a deriváltak szorzata, egyébként nem lineáris.
Példák
Az első egyenlet lineáris, a második nem.
Homogén - inhomogén differneciálegyenletek
Homogén, ha az egyenlet nem tartalmaz független változót vagy konstans tagot, inhomogén, ha igen.
Példák
Az első egyenlet homogén, a második nem.
Állandó-, vagy függvényegyütthatós differenciálegyenletek
Állandó együtthatós, ha a deriváltak együtthatói állandók, függvény együtthatós, ha függvények.
Példák
Az első egyenlet állandó-, a második függvény együtthatós.
Első-, másod-, n-edrendű differenciálegyenletek
A legnagyobb derivált rendje határozza meg az egyenlet rendjét.
Példa
A fentiek mind elsőrendűek, alább egy harmadrendű.
-- Serény György előadásai és Farkas Gergő gyakorlatai alapján írta: MAKond - 2011.01.08.