Laboratórium 2 - ZH, 2004 tavasz
Ez az oldal a korábbi SCH wikiről lett áthozva.
Ha úgy érzed, hogy bármilyen formázási vagy tartalmi probléma van vele, akkor, kérlek, javíts rajta egy rövid szerkesztéssel!
Ha nem tudod, hogyan indulj el, olvasd el a migrálási útmutatót.
2010
2004
Megoldások a VS-n, de ide is lehet írni, ha vki vmivel nem ért egyet.
1.
Adott az alábbi kapcsolás:
Az elemek értékei: C = 68 nF, R1 = 16 kOhm, R2 = 190 kOhm, R1 = 18 kOhm
- Határozza meg a kapcsolás feszültségerősítését 10 kHz-es bemenőfeszültség esetén!
- Határozza meg R3 optimális értékét!
2.
- A NYÁK-tervező programok milyen nézetben (alul/felül) ábrázolják a NYÁK-rétegeket? (A legalsó réteget honnan látja a tervező: felülről, a felső réteg felől, vagy alulról?)
Általában felülnézetből. Néhány program lehetőséget ad arra, hogy az elkészült NYÁK-ot forgassuk és minden irányból megszemléljük.
- Mi a Gerber-file?
A gyártósorok közvetlen vezérlésére szolgáló fájltípus. Ez az egyik legelterjedtebb fájltípus erre a célra.
- Soroljon fel három NYÁK-tervezési ökölszabályt!
A vezetékeink legyenek 8mil-nél vastagabbak, a tápvezetékek legyenek a jelvezetékeknél 4-5-ször vastagabbak, lehetőleg ne használjunk 0,6mm-nél vékonyabb furatokat, a furatok szélesebbek legyenek, mint a beléjük helyezendő alkatrészlábak (0,1-0,2 mm-rel), panel széléhez 1 raszternél közelebb ne tegyünk furatot, vezetéket ne derékszögben, hanem csak -ban hajlítsuk, használjunk szabványos furatátmérőket.
- Mi a via és a pin?
- Via*: két vezetékezési réteg között fémes kontaktust teremtő furat
- Pin*: pinnek nevezzük egy huzalozás végpontját a kapcoslási rajzon és a huzalozási rajzon egyaránt. Általában ez egy alkatrészláb szokott lenni, de lehet akár egy mérőpont is.
3.
Egy hálózati szűrő kapcsolási rajza az alábbi ábrán látható:
Adja meg a szűrő asszimetrikus zavarjelre vonatkozó érvényes modelljét! Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelekre!
- aszimmetrikus -> közös módusú
- rövidre van zárva
- a két tekercs párhuzamosan van kapcsolva, vasmagjuk közös -> 1db L induktivitású, dupla vezetékvastagságú tekercsként modellezhető
- a két az és a föld közé párhuzamosan van kapcsolva ->
azaz a csillapítás:
4.
Írja le a váltkaozó áramú árammérő lakatfogó és egyenáramon is használható Hall-szondás árammérő lakatfogó működési elvét!
A lakatfogó egy olyan áramváltónak tekinthető, melynek primer tekercse 1 menetszámú. (Ez az a vezeték melynek áramát mérni szeretnénk.( A szekunder tekercs pedig egy zárt, de egy ponton nyitható vasmagra van csévélve. Az I áram a vezetékre koncentrikus H-t kelt. Az a közegben B-t hoz létre, amely a szekunder tekercsben fesüzltséget indukál (RAJZ!)
A Hall szondás műszer azon elven alapszik, hogy ha egy félvezetőben áram folyik, arra merőlegesen pedig mágneses tér van, akkor mindezekre merőlegesen a szonda két lapja között fesüzltség esik, a Hall fesüzltség. (RAJZ!) U ~ B\cdot I
5-6.
Az alábbi ábrán egy mérőerősítő elvi kapcsolási rajza látható.
Az alkatrészek adatai: R11 = R12 = 10kOhm, R21 = R22 = 490 kOhm, tűrésük h = 0,1%. Az erősítő adatai: Aus0 = 100 V/mV, Ekv,min = 100 dB. Az egységnyi erősítéshez tartozó határfrekvencia f2 = 10 Mhz, a fázistartalék fí = 45 fok.
- Határozza meg a fenti kapcsolás (a) eredő szimmetrikus feszültségerősítését, (b) az erősítés statikus hibáját, (c) közös feszültségerősítését, (d) eredő (-3 dB-es) felső határfrekvenciáját!
Eredő szimmetrikus feszültségerősítés:
Erősítés statikus hibája:
Közös feszültségerősítés:
és , így AUS = AUk + 100dB és .
Eredő (-3 dB-es) felső határfrekvencia:
(Invertáló erősítőfokozathoz hasonló.)
- Határozza meg a domináns pólus törésponti frekvenciáját úgy, hogy a visszacsatolt erősítő amplitudómenete maximálisan lapos legyen!
;
- Határozza meg az erősítő kimeneti feszültségének várható szélső értékeit, ha az erősítő előzőleg ki lett ofszetelve, és az erősítő bemeneteire a következő feszültségeket kapcsoljuk: U1 = 998 mV, U2 = 1002 mV!
7.
Adja meg egy A/D átalakító SINAD paraméterének számítási módját az idő és frekvenciatartományban! Definiálja az összefüggésben szereplő mennyiségeket! Hasonlítsa össze a két számítási módszert!
Időtartomány:
Frekvenciatartomány:
J - alapharmonikus
8.
Fáziszárt hurkok esetében mit értünk befogási és követési tartomány alatt? Rajzoljon fel egy mérési elrendezést, amellyel meghatározhatja a befogási és követési tartományt!
- befogási tartomány : az a frekvenciatartomány, amelyen belülre kerülve a PLL képes elérni a fáziszárt állapotot.
- követési tartomány : az a frekvenciatartomány, amelyen belül a PLL követni képes a bemeneti jel fázisát, miközben a bemeneti frekvencia az frekvenciától távolodik. A követési tartományt a hurokelemek telítésbe jutása korlátozza.
9.
Mit értünk szemábra alatt? Rajzoljon le egy tipikus szemábrát! Mitől "szűkűl" be egy szemábra?
Amennyiben az átviteli csatorna nem ideális, az elemi jel időfüggvénye torzulni fog. Ennek eredménye, hogy az egyes mintavételi helyeken nem csak az adott elemi jelnek lesznek hozzájárulása. Az ISI és a zaj az oszcilloszkópon láthatóvá tehető, ha a vett jelet 1/Tb vízszintes eltérítési sebességgel ábrázoljuk.
Torzítatlan jelalak esetén a vett jel valamennyi Tb időtartamú szakaszát egymásra rajzoljuk, akkor nyitott szemet kapunk. Torzított esetben nem pontosan a +1 és -1 ponton halad át a jel, így a szem beszűkül, nehezebb lesz a jel detektálása.
10.
Adott egy folytonos idejű szakasz állapotteres leírása:
A szakaszt u = -ky állapot-visszacsatolással kompenzáljuk, ahol k = [2 4]. Adja meg a szakasz és a zárt szabályozási kör sajátértékeit (pólusait)! Stabil-e a szakasz, illetve a zárt rendszer?
Karakterisztikus egyenlet: ,
melynek gyökei a szakasz pólusai (sajátértékek), azaz s1=1 és s2=-2. Mivel s1 pozitív valós részű, ezért a szakasz instabil.
A zárt rendszer állapotegyenlete u=-Kx behelyettesítés után:
,
ahol a zárt rendszer sajátértékeit az (A-BK) mátrix sajátértékei adják:
.
Azaz a pólusok -1 és -2, melyek negatív valós résszel rendelkeznek, így a rendszer stabil.
11.
Vázolja fel a digitális hőmérséklet-szabályozási kör blokkvázlatát! Tüntesse fel a jelek elnevezését, jellegét és dimenzióját!
2005
Megoldások a VS-n.
1.
Adott az alábbi kapcsolás:
Az elemek értékei: R1 = 16 kOhm, R2 = 150 kOhm, R3 = 15 kOhm.
- Határozza meg a kapcsolás feszültségerősítését!
- Rajzolja át a kapcsolást, hogy alkalmas legyen a kimeneti ofszetfeszültség meghatározására!
- Számítsa át a kimeneti ofszetfeszültséget a bemenetre vonatkoztatva, ha Uki,offset = 37 mV!
2.
- Mi a footprint és hogyan kapcsolódik a NYÁK-tervezéshez?
Ahhoz, hogy egy alkatrészt fel lehessen forrasztani a NYÁK-ra és a többi alkatrésszel össze lehessen huzalozni, egy az alaktrészre jellemző rézfólia rajzolatra, az ún. footprintre van szüksége. Minden alkatrészhez egy footprint tartozik. Egy SMD ellenállás footprintje pl. két négyzet alakú rézfólia egymástól adott távolságra, míg egy furatszeretlt ellenállásé két adott méretű kör alakú rézfólia részlet, közepükön adott méretú lyukkal. Magunk is rajzolhatunk az alkatrészekhez footprintet, de az alkalmazott szoftver könyvtáraiban előre definiált footprintek is találhatók.
- Mi a via és a pin?
3.
Egy I árammal terhelt huzalellenállás egy D átmérőjű, l hosszúságú kerámiahengerre van tekercselve A huzalátmérő d < D, a menetszám N. Mekkora a kerámiahengerből kilépő fluxus?
4. Legyen egy ideális feszültséggenerátor frekvenciája f = 50 Hz, forrásfeszültsége Ueff = 230 V, az azt terhelő soros R-L impedanciában az induktivitás értéke L = 1 H, az ellenállás értéke R = 100 Ohm. Mekkora az áram effektív értéke és fázisa (a feszültséghez képest)? Mekkora az áram valós és képzetes összetevője? Mekkora veszteség keletkezik az impedanciában? Mekkora a meddő és a látszólagos teljesítmény?
-- Luxa - 2007.05.07.
-- GAbika - 2011.