Laboratórium 2 - 9. Mérés ellenőrző kérdései
1. Rajzolja fel a PLL tömbvázlatát.
A PLL egy olyan szabályozási kör, amely a kimeneti jelét egy bemeneti jelhez (referencia jel) képes képes szinkronizálni mind frekvenciában, mind fázisban.
Részegységek:
- Phase Detector: A be- és kimeneti jel fázisát hasonlítja össze és a fáziskülönbséggel arányos feszültséget állít elő.
- Hurokszűrő: Kiszűri az Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_d(t)} AC komponensét.
- VCO: A szűrő kimeneti jelétől lineárisan függő kimeneti frekvenciájú jelet állít elő.
2. Adja meg a PD kimeneti feszültségét (nemlinearizált alak).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_d(t)=0.5 \cdot K_d \cdot U_{1p} \cdot U_{2p} \cdot \sin(\Theta_e) }
Paraméterek:
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{1p}} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_{2p}} - A fázisdetektor bemeneteire juttatott jelek amplitúdói.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K_d} - A fázisdetektorra jellemző konstans.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Theta_e} - A PD két bemeneti jel fáziskülönbsége.
3. Adja meg a VCO kimeneti fázisát a komplex frekvenciatartományban.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Theta_2(s) = \frac{K_v}{s} \cdot U_f(s) = \frac{K_v}{s} \cdot F(s) \cdot K_d \cdot \Theta_e(s) }
Paraméterek:
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K_v} - A VCO átviteli tényezője.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle U_f} - A hurokszűrőből kimeneti jelének komplex amplitúdója.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K_d} - A fázisdetektorra jellemző konstans.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F(s)} - A hurokszűrő átviteli függvénye.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Theta_e(s)} - A fázisdetektor bemeneti jeleinek fáziskülönbségének a komplex amplitúdója.
4. Rajzolja fel a hurokszűrő kapcsolási rajzát és adja meg az átviteli függvényét.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F(s) = \frac {1+sC(R_1+R_2)}{sR_1C} = \frac {1+s\tau_1}{s\tau_2} }
5. Adja meg a hurokszűrő átviteli függvényét és rajzolja fel a törtvonalas Bode-diagramját.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F(s) = \frac {1+sC(R_1+R_2)}{sR_1C} = \frac {1+s\tau_1}{s\tau_2} }
6. Rajzolja fel a PLL nemlineáris alapsávi modelljét.
7. Rajzolja fel a PD nemlineáris karakterisztikáját és azon határozza meg a munkapontot.
Ha a fázishiba megnő, akkor ennek hatására megnő PD kimenetén a feszültség, majd a VCO pillantnyi kimeneti frekvenciája, ami egyben a PD egyik bemeneti jele. Ennek a jelnek úgy kell hatnia, hogy a fázishiba csökkenjen, ellenkező esetben nem jön létre fáziszárt állapot. A fenti elv a alpján a munkapont 0-ban van.
8. Adja meg a PLL bemenet és kimenete közti fáziskülönbség értékét. (aktív hurokszűrőre és fáziszárt állapotra értendő).
Mivel az alkalmazott aktív hurokszűrő erősítése nagy (kb. 200.00, mert nincs DC visszacsatolás), ezért a bementén csak közel 0V DC feszültség lehet. A hurokszűrő bemenete egyben a PD kimenete, és a PD kimenetén csak akkor lehet nulla fázishiba melett nulla feszültség, ha a két bemeneti jel között a fáziskülönbség Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \pi/2} , vagyis az egyik bemeneti jel szinusz, másik koszinusz.
9. Adja meg a PD kimeneti feszültségét a lineáris alapsávi modellben kis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Theta_e } esetesetén (nem kell levezetni).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u_d(t)= K_d \Delta \Theta_e \approx K_d \Theta_e } , ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle K_d \approx 0.5 U_{1p} U_{2p}} .
10. Rajzolja fel a PLL lineáris alpsávi modelljét.
11. Adja meg a hurokerősítés egyenletét (legegyszerűbb forma).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G(s) = K_d F(s) K_v / s } , ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle F_s} a hurokszűrő átviteli függvénye.
12. Adja meg a PLL zárthurkú átviteli függvényét (legegyszerűbb forma).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle H(s)= \frac{\Theta_2(s)}{\Theta_1(s)} = \frac {G(s)}{1+G(s)} }
13. Adja meg a PLL hibafüggvényét (legegyszerűbb forma).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1-H(s)= \frac{\Theta_e(s)}{\Theta_1(s)} = \frac{\Theta_1(s)-\Theta_2(s)}{\Theta_1(s)}}
14. Adja meg a hurokerősítés egyenletét másodfokú hurokra (elsőfokú hurok, aktív hurokszűrővel).
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G(s)=K_d \frac {1+s\tau_1}{s\tau_2} \frac {K_v}{s} } , ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tau_1, \tau_2} a szűrő megfelelő időállandói
15. Rajzolja fel a hurokerősítés törtvonalas Bode-diagramját (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \zeta = 1 } ).
16. Rajzolja fel a hurokerősítés törtvonalas Bode-diagramját (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \zeta < 0,707 } ).
A 15. kérdés ábráján van ennek a kérdésnek a válasza is!
17. Rajzolja fel a zárthurkú átviteli függvény Bode-diagramját különböző Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \zeta } -ra.
18. Rajzolja fel a hibafüggvény Bode-diagramját különböző Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \zeta } -k esetén.
19. Adja meg a PLL tervezési paramétereit és, hogy az egyes paraméterek mit szabnak meg.
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tau_1 } a sávszélességet (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_n} )-t szabja meg,
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \tau_2 } a stabilitási tulajdonságokat (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \zeta} -t), illetve a dinamikát szabja meg,
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G_0 } a követési tulajdonságokat (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \Theta_e} -t) szabja meg (az alkalmazott aktív szűrőre Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle G_0 = \infty}
20. Adja meg a PLL frekvenciatartományait.
21. Rajzolja fel az FM demodulátor tömbvázlatát.
22. Milyen tervezési feltételt kell az FM demodulátornak kielégítenie?
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_n \geq } maximális modulációs frekvencia, ahol Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_n} a pólusfrekvencia.
23. Rajzolja fel a PM demodulátor tömbvázlatát.
24. Milyen tervezési feltételt kell a PM demodulátornak kielégítenie?
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \omega_n \leq } minimális modulációs frekvencia