Algoritmuselmélet - PZH, 2013.04.24.
2013.04.24. PZH megoldásai
1. Feladat (Van megoldás)
Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .
Van olyan és , hogy esetén
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
, ahol , vagyis
ha (A lényeg, hogy felülről becsüljük!)
Tehát2. Feladat (Van megoldás)
Adott egy teljes bináris fa, a csúcsaiba egész számok vannak írva, összesen n darab (a fa nem feltétlenül bináris keresőfa). Adjon algoritmust, ami lépésben megkeres egy olyan csúcsot a fában, aminek a részfája kupac, és aminek a magassága a legető legnagyobb az összes ilyen csúcs közül.
- Bár nem tartozik a feladathoz, talán érdemes megjegyezzem, hogy bináris kereső fa nem is lehetne, hiszen akkor ott kapásból csak a legalsó szinten lévő elemek lehetnek kupacok (egy 1 elemet tartalmazó kupac), hiszen bináris keresőfánál balra kisebbek, jobbra nagyobbak vannak, míg kupacnál balra és jobbra is nagyobbak vannak.
- Továbbá a teljes bináris fára azért van szükség, mert így "jóval egyszerűbb" a feladat, és nem kell szívózni annak vizsgálatával, hogy az adott részfa teljes bináris fa-e (ugyebár ez a kupac egyik fontos tulajdonsága).
Minden csúcsban 3 adatot fogunk számon tartani: Érték (ez persze adott már), részfa magassága (jelüljük M-mel), és egy bool érték (IGAZ/HAMIS, jelöljük B-vel), hogy igaz-e a részfájára, hogy az kupac.
- Első lépésben a legalsó szinteken lévő csúcsok esetén .
- Legyen egy változónk, amiben tároljuk, hogy melyik csúcsra igaz, hogy a részfája a "legnagyobb" kupac (kezdeti értéke legyen mondjuk az egyik legalsó szinten lévő csúcs).
- Minden további szinten az a feladatunk, hogy megnézzük az adott csúcs (x) bal, és jobb fiát .
- Megnézzük, hogy nagyobbak-e, mint x, majd megnézzük, hogy kupac tulajdonsággal bírnak-e:
- Ha majd a változónkba belerakjuk a csúcsot. Vagyis ha mindkettő nagyobb, és mindkettő kupac tulajdonsággal bír, akkor a csúcs részfa magassága 1-gyel nagyobb lesz, mint az egyik (bal, vagy jobb) fia magassága, és kupac tulajdonságú lesz.
- Ha VAGY VAGY VAGY . Vagyis ha bármelyik feltétel nem teljesül (valamelyik fia kisebb, avagy valamelyik gyerekére nem igaz, hogy kupac tulajdonságú), akkor maga a csúcs sem lehet már kupac tulajdonságú (itt a magasságot nem is kéne beállítani, de...hát miért is ne).
- Megnézzük, hogy nagyobbak-e, mint x, majd megnézzük, hogy kupac tulajdonsággal bírnak-e:
3. Feladat (Van megoldás)
Kukori és Kotkoda egy-egy bináris fára gondolnak (nem feltétlenül bináris keresőfákra). Következik-e, hogy a két fa azonos, ha
(a) inorder bejárással kilolvasva a két fát ugyanazt a számsorozatot kapják?
(b) preorder bejárással kiolvasva a két fát ugyanazt a számsorozatot kapják?
4. Feladat
TODO
5. Feladat (Van megoldás)
Egy soros és kettő oszlopos táblázatban adott számpár (egy sor egy számpárt tartalmaz, a számok mind különböző egész számok a táblázatban). Szeretnénk a táblázat sorait úgy átrendezni, hogy a 2. oszlop szerint növekvő sorrendben legyenek a sorok (számpárok). Egy fajta műveletet hajthatunk végre: kijelölhetünk néhány egymást alatti sort (számpárt) és ezeket rendezhetjük az első oszlop szerint növekvően vagy csökkenően. Adjon algoritmust, ami csak ezt a fajta műveletet használva lépésben megoldja a feladatot!
- Rendezzük a tömböt az 1. oszlop szerint növekvően.
- A továbbiakban minden lépésben megkeressük az legkisebb elemet, és a helyére tesszük.
- Megkeressük a 2. oszlopban az legkisebbet, az ő helye a tömbben legyen
- Mivel az 1. oszlop szerint növekvően vannak a számpárok, így ahhoz, hogy a elem az helyre kerüljön, a számokat csökkenő sorrendbe kell rendezni az intervallumon.
- Ha ezt megcsináltuk, akkor az első helyen már rendezve lesz a tömb.
- Az intervallumon rendezzük a számokat növekvő sorrendben.
- Ezt addig folytatjuk, míg nincs minden számpár a helyén.
- A műveletet minden lépésben alkalommal használjuk:
- Először növekvő sorrendbe rendeztük az egész tömböt.
- Utána minden lépésben 2x:
- Egyszer a helyére rakjuk az elemet azzal, hogy csökkenő sorrendbe rakjuk a számpárokat (persze csak a megfelelőket).
- Majd újra növekvőbe a maradék számpárokat.
- Így az algoritmus lépéssel rendezi a számpárokat a 2. oszlop szerint.
6. Feladat (Van megoldás)
Adott egy hosszú tömb. Tudjuk, hogy a tömb első néhány ( darab) elem 0, a többi 1, de értékét nem ismerjük. Adjon (nem )1 összehasonlítást használó algoritmust, ami meghatározza értékét.
1 A feladatban szerepel, de az csak elgépelés.
- Először nézzük meg, hogy az első 2 elem -e, ha igen, akkor .
- Ha nem, akkor minden további lépésnél ugorjunk a 2x annyiadik cellába (ez legyen ), ha pedig túl lépnénk a tömböt ezzel, akkor az utolsóba.
- Vizsgáljuk meg, hogy "hol vagyunk": (az aktuális cellát, és a 2 szomszédját)
- Ha -t látunk, akkor ugrunk megint 2x akkorát (ugyanazzal a kritériummal, mint előbb).
- Ha -t látunk, akkor .
- Ha -t látunk, akkor .
- Ha -t látunk, akkor egy bináris keresés segítségével(1) a 2 legutóbbi vizsgált elem közötti cellákban megkeressük a , vagy felállást, és a értékét a látottak alapján beállítjuk vagy .
(1) Ha -t lát, jobbra lép, ha -t, akkor balra, másik 2 esetben pedig találatunk van.
- Az algoritmus működése alapján belátható, hogy időben fut.
7. Feladat
TODO
8. Feladat (Van megoldás)
Bizonyítsa be, hogy egy piros-fekete fában egy levél testvére vagy levél, vagy piros csúcs!
- Összesen 5 felállás lehet:
- Ebből az 1. és a 4. jó is (a 4. persze csak akkor, ha X az nem a főgyökér).
- A 3. - kis módosítással - látszik, hogy szintén fenn állhat gond nélkül:
- Egyedül a 2. és az 5. problémás. Ezek viszont rosszak is, hiszen mindkét esetben elmondható, hogy X-nek a fekete magassága jobbra 1, balra viszont legalább 2, mert az Y csúcsnak legalább 1-1 levél fia van. Tehát belső csúcsnál ilyen állapot nem állhat fent.
- Az első 2 esetben azt bizonyítottuk, hogy levél testvére lehet levél, vagy piros csúcs.
- A 3. esetben pedig azt, hogy nem lehet fekete csúcs a levél testvére.
- Így be is bizonyítottuk, hogy levél testvére CSAK levél, vagy piros csúcs lehet.