„Jelek és jelfeldolgozás kvíz” változatai közötti eltérés

a Sortörések javítása
Kérdések: újak hozzáadása
53. sor: 53. sor:


==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t)]^2</math>. Jellemezze a rendszert!==
==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t)]^2</math>. Jellemezze a rendszert!==
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
{{Kvízkérdés|típus=több|válasz=1,2,4}}
{{Kvízkérdés|típus=több|válasz=1,2,4}}
#invariáns
#invariáns
61. sor: 60. sor:


==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t+3)]</math>. Jellemezze a rendszert!==
==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t+3)]</math>. Jellemezze a rendszert!==
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
{{Kvízkérdés|típus=több|válasz=1,3,4}}
{{Kvízkérdés|típus=több|válasz=1,3,4}}
#invariáns
#invariáns
68. sor: 66. sor:
#gerjesztés-válasz stabil
#gerjesztés-válasz stabil


==Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat. Adja meg a rendszer állapotváltozós leírásának normálalakját!==
==Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat.==
[[Fájl:Jelek_20240424_ZH_jelfolyamhálózat.png|keret|keretnélküli|500x500px]]
[[Fájl:Jelek_20240424_ZH_jelfolyamhálózat.png|keret|keretnélküli|500x500px]]
Adja meg a rendszer állapotváltozós leírásának normálalakját!
{{Kvízkérdés|típus=egy|válasz=4}}
{{Kvízkérdés|típus=egy|válasz=4}}
#<math>\begin{cases}
#<math>\begin{cases}
87. sor: 88. sor:
y(t)=6x(t)
y(t)=6x(t)
\end{cases}</math>
\end{cases}</math>
Adja meg a rendszer átviteli karakerisztikáját normálalakban!*
{{Kvízkérdés|típus=egy|válasz=2}}
# <math>H(e^{j\vartheta})=\frac{2+1e^{j\vartheta}}{3e^{j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{12}{1+0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{12}{1-0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{6}{1-0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{6}{1+0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{2+1e^{j\vartheta}}{6e^{j\vartheta}}</math>


==Egy diszkrét idejű rendszer ugrásválasza <math>g[k]=\varepsilon[k]2^k</math>. Adja meg a rendszer <math>h[k]</math> impulzusválaszát!==
==Egy diszkrét idejű rendszer ugrásválasza <math>g[k]=\varepsilon[k]2^k</math>. Adja meg a rendszer <math>h[k]</math> impulzusválaszát!==
141. sor: 152. sor:
#<math>\bar X=5e^{-j0,5}</math>
#<math>\bar X=5e^{-j0,5}</math>
#<math>\bar X=0,5e^{-j0,05}</math>
#<math>\bar X=0,5e^{-j0,05}</math>
== Egy DI rendszer gerjesztésének fazora a <math>\vartheta=\frac{\pi}{4}</math> körfrekvencián <math>\bar U=5e^{j0,4}</math>. A rendszer átviteli tényezője ugyanezen a körfrekvencián <math>\bar H=2e^{-j1,2}</math>. Határozza meg a rendszer válaszának időfüggvényét!* ==
{{Kvízkérdés|típus=egy|válasz=2}}
# <math>y[k]=10\cos(\frac{\pi}{4}k+0,8)</math>
# <math>y[k]=10\cos(\frac{\pi}{4}k-0,8)</math>
# <math>y[k]=10\cos(0,8k+\frac{\pi}{4})</math>
# <math>y[k]=5\cos(\frac{\pi}{4}k+0,4)</math>
# <math>y[k]=5\cos(\frac{\pi}{4}k+1,4)</math>
# <math>y[k]=5\cos(0,8k+\frac{\pi}{4})</math>
== Egy DI jel spektruma a <math>\vartheta=[0,\pi]</math> intervallumon <math>X(e^{j\vartheta})=\pi-\vartheta</math>. Határozza meg a jel sávszélességét, ha <math>\sigma=0,1</math>.* ==
{{Kvízkérdés|típus=egy|válasz=5}}
# <math>0,9</math>
# <math>0,1\pi</math>
# <math>0,1</math>
# <math>0,81\pi</math>
# <math>0,9\pi</math>
# <math>0,01\pi</math>
== Mely tulajdonság(ok) jellemző(ek) egy FIR típusú DI rendszerre?* ==
{{Kvízkérdés|típus=több|válasz=3}}
# Mindig konstans az amplitúdókarakterisztikája
# Impulzusválasza mindig monoton csökkenő
# Mindig gerjesztés-válasz stabil
# Mindig lineáris az amplitúdókarakterisztikája
== Egy periodikus DI jel periódushossza <math>L=4</math>. Egy periódusának mintái: <math>x[0]=-1,\ x[1]=1,\ x[2]=1,\ x[3]=1</math>. Adja meg a jel nulladik komplex Fourier-együtthatójának értékét, <math>X^C_0</math>-t, két tizedesjegy pontossággal!* ==
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
{{Kvízkérdés|típus=egy|válasz=2}}
# 0,25
# 0,5
# 1
# 1,25
# 2,5
== Mely tulajdonság(ok) jellemzik a torzításmentes jelátvitelt megvalósító rendszert?* ==
{{Kvízkérdés|típus=több|válasz=1,4,5}}
# Konstans futásidő-karakterisztika
# Lineáris amplitúdókarakterisztika
# Lineáris futásidő-karakterisztika
# Konstans amplitúdókarakterisztika
# Lineáris fáziskarakterisztika
== Egy <math>L=4</math> periódusidejű jel komplex Fourier-együtthatói: <math>X^C_0=1,\ X^C_1=2e^{j0,2},\ X^C_2=0</math>. Adja meg a jel ''mérnöki valós alakjának'' megfelelő időfüggvényét!* ==
{{Kvízkérdés|típus=egy|válasz=4}}
# <math>x[k]=1+2\cos(\frac{\pi}{2}k+0,2)</math>
# <math>x[k]=1+0,2\cos(\frac{\pi}{2}k+2)</math>
# <math>x[k]=2+4\cos(\frac{\pi}{2}k+0,2)</math>
# <math>x[k]=1+4\cos(\frac{\pi}{2}k+0,2)</math>
# <math>x[k]=2+4\cos(\frac{\pi}{2}k+0,4)</math>
== Egy folytonos idejű jel mintavételezése során a mintavételi körfrekvencia 8 krad/s. Határozza meg a folytonos idejű jel maximális sávszélességét, amelynek ezzel a mintavételezéssel az időfüggvénye helyreállítható (rekonstruálható)!* ==
A választ 1 tizedesjegy pontossággal, krad/s-ban adja meg! ''A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.''
{{Kvízkérdés|típus=egy|válasz=3}}
# 0.5
# 2
# 4
# 8
# 16
== Egy DI rendszer átviteli karakterisztikája <math>H(e^{j\vartheta})=\frac{e^{-j\vartheta}+e^{-j2\vartheta}}{1+e^{-j\vartheta}+e^{-j2\vartheta}}</math>. Adja meg a rendszer átviteli tényezőjét a <math>\vartheta=\frac{\pi}{2}</math> körfrekvencián!* ==
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\sqrt2e^{j\frac{\pi}{4}}</math>
# <math>2e^{j\frac{\pi}{4}}</math>
# <math>\sqrt2e^{-j\frac{\pi}{4}}</math>
# <math>2e^{-j\frac{\pi}{4}}</math>
# <math>4e^{j\frac{\pi}{4}}</math>
# <math>4e^{-j\frac{\pi}{4}}</math>
== Egy DI rendszer amplitúdókarakteriszikája az alábbi ábrán látható. Határozza meg, hogy milyen típusú szűrőt valósít meg a rendszer a toleranciaséma alapján, ha az áteresztő és a zárósáv között legalább 10 dB eltérésnek kell lennie!* ==
[[Fájl:Jelek vizsga amplitúdókarakterisztika.png|keret|keretnélküli|500x500px]]
{{Kvízkérdés|típus=egy|válasz=5}}
# Sávzáró
# Minimálfázisú
# Sáváteresztő
# Mindent áteresztő
# Felüláteresztő
# Aluláteresztő