„Jelek és jelfeldolgozás kvíz” változatai közötti eltérés

a Visszavontam a saját szerkesztésemet (oldid: 205594) – nem ezzel volt a gond
Címke: Visszavonás
a Sortörések javítása
37. sor: 37. sor:
\end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!==
\end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!==
{{Kvízkérdés|típus=egy|válasz=4}}
{{Kvízkérdés|típus=egy|válasz=4}}
#<math>x(t_k+h_k)\approx(1-h_k)x(t_k)-3h_ku(t_k)</math>
#<math>x(t_k+h_k)\approx(1-h_k)x(t_k)-3h_ku(t_k)</math>
#<math>x(t_k+h_k)\approx(1-2h_k)x(t_k)+3h_ku(t_k)</math>
#<math>x(t_k+h_k)\approx(1-2h_k)x(t_k)+3h_ku(t_k)</math>
48. sor: 47. sor:
\end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!==
\end{cases}</math> Adja meg a rendszer állapotváltozóinak <math>x(t)</math> közelítő számításához szolgáló előrelépő Euler-séma formuláját!==
{{Kvízkérdés|típus=egy|válasz=2}}
{{Kvízkérdés|típus=egy|válasz=2}}
#<math>x(t_k+h_k)\approx(1+3h_k)x(t_k)+h_ku(t_k)</math>
#<math>x(t_k+h_k)\approx(1+3h_k)x(t_k)+h_ku(t_k)</math>
#<math>x(t_k+h_k)\approx(1+3h_k)x(t_k)+2h_ku(t_k)</math>
#<math>x(t_k+h_k)\approx(1+3h_k)x(t_k)+2h_ku(t_k)</math>
57. sor: 55. sor:
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
{{Kvízkérdés|típus=több|válasz=1,2,4}}
{{Kvízkérdés|típus=több|válasz=1,2,4}}
#invariáns
#invariáns
#kauzális
#kauzális
66. sor: 63. sor:
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
{{Kvízkérdés|típus=több|válasz=1,3,4}}
{{Kvízkérdés|típus=több|válasz=1,3,4}}
#invariáns
#invariáns
#kauzális
#kauzális
73. sor: 69. sor:


==Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat. Adja meg a rendszer állapotváltozós leírásának normálalakját!==
==Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat. Adja meg a rendszer állapotváltozós leírásának normálalakját!==
[[Fájl:Jelek_20240424_ZH_jelfolyamhálózat.png|keret|keretnélküli|500x500px]]{{Kvízkérdés|típus=egy|válasz=4}}
[[Fájl:Jelek_20240424_ZH_jelfolyamhálózat.png|keret|keretnélküli|500x500px]]
 
{{Kvízkérdés|típus=egy|válasz=4}}
#<math>\begin{cases}
#<math>\begin{cases}
x'(t)=4x(t)+2u(t) \\
x'(t)=4x(t)+2u(t) \\
94. sor: 90. sor:
==Egy diszkrét idejű rendszer ugrásválasza <math>g[k]=\varepsilon[k]2^k</math>. Adja meg a rendszer <math>h[k]</math> impulzusválaszát!==
==Egy diszkrét idejű rendszer ugrásválasza <math>g[k]=\varepsilon[k]2^k</math>. Adja meg a rendszer <math>h[k]</math> impulzusválaszát!==
{{Kvízkérdés|típus=egy|válasz=3}}
{{Kvízkérdés|típus=egy|válasz=3}}
#<math>\frac{1}{2}\delta[k]</math>
#<math>\frac{1}{2}\delta[k]</math>
#<math>\frac{1}{2}\varepsilon[k]2^k</math>
#<math>\frac{1}{2}\varepsilon[k]2^k</math>
103. sor: 98. sor:
==Egy diszkrét idejű rendszer rendszeregyenlete <math>y[k]+5y[k-1]=u[k]-2u[k-1]</math>. Adja meg a rendszer átviteli karakterisztikáját!==
==Egy diszkrét idejű rendszer rendszeregyenlete <math>y[k]+5y[k-1]=u[k]-2u[k-1]</math>. Adja meg a rendszer átviteli karakterisztikáját!==
{{Kvízkérdés|típus=egy|válasz=3}}
{{Kvízkérdés|típus=egy|válasz=3}}
#<math>H(e^{j\vartheta})=\frac{-1+2e^{-j\vartheta}}{1+5e^{-j\vartheta}}</math>
#<math>H(e^{j\vartheta})=\frac{-1+2e^{-j\vartheta}}{1+5e^{-j\vartheta}}</math>
#Nem létezik
#Nem létezik
113. sor: 107. sor:
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
{{Kvízkérdés|típus=egy|válasz=3}}
{{Kvízkérdés|típus=egy|válasz=3}}
#3
#3
#4
#4
122. sor: 115. sor:
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
{{Kvízkérdés|típus=egy|válasz=2}}
{{Kvízkérdés|típus=egy|válasz=2}}
#3
#3
#4
#4
130. sor: 122. sor:
==Egy diszkrét idejű, lineáris, invariáns rendszer ugrásválasza <math>y[k]=5\cdot0,8^k\varepsilon[k]</math>. Adja meg a rendszer válaszát az <math>u[k]=2\cdot\varepsilon[k+3]</math> gerjesztésre!==
==Egy diszkrét idejű, lineáris, invariáns rendszer ugrásválasza <math>y[k]=5\cdot0,8^k\varepsilon[k]</math>. Adja meg a rendszer válaszát az <math>u[k]=2\cdot\varepsilon[k+3]</math> gerjesztésre!==
{{Kvízkérdés|típus=egy|válasz=3}}
{{Kvízkérdés|típus=egy|válasz=3}}
#<math>5\cdot0,8^{k+3}\varepsilon[k+3]</math>
#<math>5\cdot0,8^{k+3}\varepsilon[k+3]</math>
#Az <math>u[k]</math> nem belépő, ezért nem létezik
#Az <math>u[k]</math> nem belépő, ezért nem létezik
139. sor: 130. sor:
==Egy diszkrét idejű jel időfüggvénye <math>x[k]=2\cos[0,25\pi k-1,25]</math>. Adja meg a jel fazorát (komplex csúcsértékét)!==
==Egy diszkrét idejű jel időfüggvénye <math>x[k]=2\cos[0,25\pi k-1,25]</math>. Adja meg a jel fazorát (komplex csúcsértékét)!==
{{Kvízkérdés|típus=egy|válasz=4}}
{{Kvízkérdés|típus=egy|válasz=4}}
#<math>\bar X=2e^{j0,25}</math>
#<math>\bar X=2e^{j0,25}</math>
#<math>\bar X=2e^{j1,25}</math>
#<math>\bar X=2e^{j1,25}</math>
#<math>\bar X=2e^{-j0,25}</math>
#<math>\bar X=2e^{-j0,25}</math>
#<math>\bar X=2e^{-j1,25}</math>
#<math>\bar X=2e^{-j1,25}</math>
==Egy diszkrét idejű jel időfüggvénye <math>x[k]=5\cos[0,5\pi k-0,5]</math>. Adja meg a jel fazorát (komplex csúcsértékét)!==
==Egy diszkrét idejű jel időfüggvénye <math>x[k]=5\cos[0,5\pi k-0,5]</math>. Adja meg a jel fazorát (komplex csúcsértékét)!==
{{Kvízkérdés|típus=egy|válasz=3}}
{{Kvízkérdés|típus=egy|válasz=3}}
#<math>\bar X=5e^{j0,5}</math>
#<math>\bar X=5e^{j0,5}</math>
#<math>\bar X=0,5e^{j0,5}</math>
#<math>\bar X=0,5e^{j0,5}</math>
#<math>\bar X=5e^{-j0,5}</math>
#<math>\bar X=5e^{-j0,5}</math>
#<math>\bar X=0,5e^{-j0,05}</math>
#<math>\bar X=0,5e^{-j0,05}</math>