„Laboratórium 1 - 2008 őszi ZH megoldások” változatai közötti eltérés
a autoedit v2: fájlhivatkozások egységesítése, az új közvetlenül az adott fájlra mutat |
|||
34. sor: | 34. sor: | ||
A fázisszög az alábbi képlettel határozható meg: <math> \varphi = 360^{\circ} \frac{\Delta t}{T} </math> | A fázisszög az alábbi képlettel határozható meg: <math> \varphi = 360^{\circ} \frac{\Delta t}{T} </math> | ||
[[ | [[File:Labor1 kép10.gif]] | ||
'''c) A periódusidőt és a fázistolást ugyanazzal az időalappal mérjük. A leolvasási bizonytalanság 1%, az időalap-generátor erősítéshibája 0,5% és a függőleges erősítő erősítőhibája 0,5%. Mekkora a fázisszögmérés relatív hibája legrosszabb esetben?''' | '''c) A periódusidőt és a fázistolást ugyanazzal az időalappal mérjük. A leolvasási bizonytalanság 1%, az időalap-generátor erősítéshibája 0,5% és a függőleges erősítő erősítőhibája 0,5%. Mekkora a fázisszögmérés relatív hibája legrosszabb esetben?''' | ||
48. sor: | 48. sor: | ||
*Szinusz jel spektruma: | *Szinusz jel spektruma: | ||
[[ | [[File:Labor1 kép11.gif]] | ||
*Háromszögjel időfüggvénye és spektruma: | *Háromszögjel időfüggvénye és spektruma: | ||
62. sor: | 62. sor: | ||
Négyvezetékes mérés jelentősége: Kis impedanciák esetén a hozzávezetési és kontaktellenállásokat hatástalanítandó, a négykapcsú mérési elrendezés indokolt, ha összemérhető a mérendő ellenállás értéke a hozzávezetések ellenállásával. | Négyvezetékes mérés jelentősége: Kis impedanciák esetén a hozzávezetési és kontaktellenállásokat hatástalanítandó, a négykapcsú mérési elrendezés indokolt, ha összemérhető a mérendő ellenállás értéke a hozzávezetések ellenállásával. | ||
[[ | [[File:Labor1 kép13.gif]] | ||
=== 5. Feladat === | === 5. Feladat === | ||
68. sor: | 68. sor: | ||
'''Rajzolja fel egy 2:1 áttételű transzformátor modelljét! Ismertesse a modell fizikai jelentését! Hogyan viszonyulnak egymáshoz a modellparaméterek laza és szoros csatolás esetén?''' | '''Rajzolja fel egy 2:1 áttételű transzformátor modelljét! Ismertesse a modell fizikai jelentését! Hogyan viszonyulnak egymáshoz a modellparaméterek laza és szoros csatolás esetén?''' | ||
[[ | [[File:Labor1 kép14.gif]] | ||
{| border="1" | {| border="1" | ||
94. sor: | 94. sor: | ||
'''A flip-flop adatbemenetére jutó jelet egy inverteren keresztül vezetjük keresztül az alábbi ábrán látható módon.''' | '''A flip-flop adatbemenetére jutó jelet egy inverteren keresztül vezetjük keresztül az alábbi ábrán látható módon.''' | ||
[[ | [[File:Labor1 kép15.gif]] | ||
'''Az inverter jelterjedési késleltetései:''' | '''Az inverter jelterjedési késleltetései:''' | ||
122. sor: | 122. sor: | ||
'''Rajzolja fel a bipoláris tranzisztor 5 elemes helyettesítőképét! Adja meg a helyettesítőkép elemeit a tranzisztor fizikai paramétereivel!''' | '''Rajzolja fel a bipoláris tranzisztor 5 elemes helyettesítőképét! Adja meg a helyettesítőkép elemeit a tranzisztor fizikai paramétereivel!''' | ||
[[ | [[File:Labor1 kép16.gif]] | ||
* <math> g_{b'c} = \frac{1}{r_c}- \mu g_{b'e} </math> | * <math> g_{b'c} = \frac{1}{r_c}- \mu g_{b'e} </math> | ||
202. sor: | 202. sor: | ||
A lüktető egyenáram frekvenciája a váltóáram duplája. | A lüktető egyenáram frekvenciája a váltóáram duplája. | ||
[[ | [[File:Labor1 kép17.gif]] | ||
[[ | [[File:Labor1 kép18.gif]] | ||
=== 2. Feladat === | === 2. Feladat === | ||
224. sor: | 224. sor: | ||
'''Három és ötvezetékes mérés. Milyen esetekben fontos az ötvezetékes?''' | '''Három és ötvezetékes mérés. Milyen esetekben fontos az ötvezetékes?''' | ||
[[ | [[File:Labor1 kép19.gif]] | ||
Hárompólus négykapcsú mérésénél ötvezetékes mérést kell használnunk, <math> Z_1, Z_2 </math> impedanciák áramát G pontba tereljük. | Hárompólus négykapcsú mérésénél ötvezetékes mérést kell használnunk, <math> Z_1, Z_2 </math> impedanciák áramát G pontba tereljük. | ||
248. sor: | 248. sor: | ||
*'''Ábrázolja a gerjesztő jel és az inverter arra adott válaszának időfüggvényét egy ábrán. Ne feledkezzen meg az _y_ tengely (feszültség) helyes skálázásáról!''' | *'''Ábrázolja a gerjesztő jel és az inverter arra adott válaszának időfüggvényét egy ábrán. Ne feledkezzen meg az _y_ tengely (feszültség) helyes skálázásáról!''' | ||
[[ | [[File:Labor1 kép20.gif]] | ||
A mérésen 0V alapszintű 5 <math>V_pp</math> nagyságú kb. 350Hz-es jellel kellett vizsgálni XY üzemmódban (mindképpen pozitív feszültség kell, hiszen a TTL áramkörök a negatív feszültséget levágják) | A mérésen 0V alapszintű 5 <math>V_pp</math> nagyságú kb. 350Hz-es jellel kellett vizsgálni XY üzemmódban (mindképpen pozitív feszültség kell, hiszen a TTL áramkörök a negatív feszültséget levágják) | ||
[[ | [[File:Labor1 kép21.gif]] | ||
=== 7. Feladat === | === 7. Feladat === |
A lap jelenlegi, 2017. július 12., 14:36-kori változata
2008 őszi ZH
1. Feladat
Egy 10 V csúcsértékű, 1 kHz frekvenciájú szimmetrikus négyszögjelet mérünk az alábbi műszerekkel, mekkora értéket mutatnak?
Mindegyik szinuszos jelet feltételez, és mindegyik effektív értéket jelez ki.
Mérőműszer | Mért érték | Kijelzett érték |
Effektív érték mérő | ||
Csúcsértékmérő | ||
Abszolút középértékmérő |
Nem biztos, hogy helyes ez a megoldás! Effektív és csúcsérték mérő fel volt cserélve, javítva.
Műszerek leírása (3. oldali táblázat)
2. Feladat
Azonos frekvenciájú szinuszos jelek közötti fázisszöget mérünk oszcilloszkóppal időeltolódás és periódusidő alapján:
a) Rajzolja fel a mérési elrendezést!
A két jelet az oszcilloszkóp két különböző csatornájára tesszük. Mindkét jelen megkeresünk egy azonos fázishelyzetnek megfelelő értéket, célszerű a nullátmenetet választani. Ezek távolsága adja meg az időtengelyen a késleltetést, ami . A T periódusidő meghatározható bármelyik jel két egymás utáni azonos irányú nullátmenete alapján.
b) Rajzolja fel a mért jelalakokat, jelölje be rajta a mért mennyiségeket, és adja meg a fázisszög származtatási összefüggését!
A fázisszög az alábbi képlettel határozható meg:
c) A periódusidőt és a fázistolást ugyanazzal az időalappal mérjük. A leolvasási bizonytalanság 1%, az időalap-generátor erősítéshibája 0,5% és a függőleges erősítő erősítőhibája 0,5%. Mekkora a fázisszögmérés relatív hibája legrosszabb esetben?
A mérés előnye, hogy nem függ a pontosság az oszcilloszkóp időalapjának pontosságától. Legrosszabb esetben ( worst case ) a hiba: 1%, mivel az erősítéshiba nem változtatja meg a nullátmeneteket. [Hibás?]
Másik lehetséges megoldás: két leolvasás történik, és T bizonytalansága egyaránt 1%. A worst case összegzésnél a tényezők szerinti parciális deriválás és súlyozás után kijön, hogy a relatív hibához a kitevőjük (1 és -1) abszolút értékével járulnak hozzá, azaz 2% lesz a bizonytalanság.--Mp9k1 (vita) 2013. december 5., 23:22 (UTC)
3. Feladat
Adja meg az ideális szinuszjel és szimmetrikus háromszögjel amplitúdóspektrumát! A spektrumokat jellegre helyes ábrán szemléltesse!
- Szinusz jel spektruma:
- Háromszögjel időfüggvénye és spektruma:
- Megjegyzés: spektrum meghatározása:
4. Feladat
Rajzolja föl a kettő- illetve a négyvezetékes impedanciamérést! Milyen esetekben fontos a négyvezetékes elrendezés?
Négyvezetékes mérés jelentősége: Kis impedanciák esetén a hozzávezetési és kontaktellenállásokat hatástalanítandó, a négykapcsú mérési elrendezés indokolt, ha összemérhető a mérendő ellenállás értéke a hozzávezetések ellenállásával.
5. Feladat
Rajzolja fel egy 2:1 áttételű transzformátor modelljét! Ismertesse a modell fizikai jelentését! Hogyan viszonyulnak egymáshoz a modellparaméterek laza és szoros csatolás esetén?
primer feszültség | ||
szekunder feszültség | ||
primer, szekunder oldali szórási impedanciák | Valós komponens: rézellenállás; Képzetes komponens: szórási induktivitás | |
mágnesező impedancia | mágnesező impedanciából és vasveszteségi ellenállásból áll |
Szorosnál a főmező reaktancia nagyságrendekkel nagyobb, mint a szórt, lazánál pedig fordítva.
6. Feladat
Egy D flip-flopot a következő gyári adatok jellemeznek:
setup time | 10 ns | |
hold time | 5 ns |
A flip-flop adatbemenetére jutó jelet egy inverteren keresztül vezetjük keresztül az alábbi ábrán látható módon.
Az inverter jelterjedési késleltetései:
min | max | |
3ns | 5ns | |
2ns | 4ns |
Adja meg a worst case setup időt erre a módosított flip-flopra!
15 ns a setup worst case-ben
Itt a '-s tagok a módosított ff paraméterei. Az első korrekciós tag az órajel késleltetésének a hatása, ezért kell csak a sorból venni a min/max értékeket (táblázat első sora). A második korrekciós tag az adat késleltetésének eredménye, így a és sorokat is figyelembe kell venni (tehát az egész táblázatot).
Amikor egy korrekciós taggal növeljük az eredményt, akkor maximim kell, amikor csökkentjük, akkor minimum kell, így lesz a végeredmény maximális, tehát worst-case eredmény".
7. Feladat
Rajzolja fel a bipoláris tranzisztor 5 elemes helyettesítőképét! Adja meg a helyettesítőkép elemeit a tranzisztor fizikai paramétereivel!
8. Feladat
Egy törölhető 6-os számláló () a katalógus alapján maximálisan 30MHz-es órajellel működtethető. Meg kell határoznunk, hogy egy konkrét példánynak mekkora a maximális működési frekvenciája. Rendelkezésre áll egy változtatható frekvenciájú (1Hz...200MHz) generátor és egy logikai analizátor. A számláló bemeneteire tetszőleges konstans logikai értéket kapcsolhat (kapcsolók segítségével). Röviden írja le, hogy miként oldaná meg a feladatot!
A logikai analizátor adat bemeneteire csatlakoztatjuk a számláló kimeneteit. Állapotanalízis üzemmódot állítunk be, a számláló órajele a mintavevő órajel. A végállapotot (111) állítjuk be leállási feltételként. 30MHz-től növekvő frekvenciákon ellenőrizzük, hogy a számláló egymást követő állapotai megfelelnek-e a bináris számláló működésének. A legalacsonyabb olyan frekvencia ahol még igen a maximális működési frekvencia.
A Clear -re triggerelünk és az analízist az fogja indítani, hogy töröljük az értékeket.
9. Feladat
Hasonlítsa össze a párhuzamos port mérésben vizsgált két üzemmódjának (SPP és EPP) paramétereit az alábbi kategóriák szerint! Amennyiben egy állítás az adott üzemmódra nézve igaz "+", ha hamis akkor "-" jellel jelölje!
Tulajdonság | SPP | EPP | Magyarázat ( ez nem volt feladat ) |
Kétirányú adatátvitel | - | + | Az SPP módban csak kimenő irányú adatátvitel történik, EPP módban lehetséges a cím és adat kivitel mellett ezen paraméterek visszaolvasása is. |
Nincs címzési lehetőség | + | - | Az SPP módhoz egyetlen 8 bites kimeneti adatregiszter tartozik. Az EPP módhoz egy 8 bites címregiszter és a lehetséges 256 egyedileg címezhető adat regiszterből csak az első 4 címhez tartozik egy-egy írható/olvasható 8 bites adatregiszter. |
Nagy sebesség | ?+? | ||
Átvitelszinkronizáció lehetősége | ?+? | ||
Szoftveres átvitelvezérlés a PC-ben | + |
10. Feladat
Adjon meg egy olyan tesztvektor-sorozatot az alábbi állapottáblával megadott, egyetlen X bemenettel rendelkező automatához, amely leteszteli az összes állapotátmenetét. A mellékelt táblázatban azt is tüntesse fel, hogy adott bemenetre milyen állapotba kerül az automata! Az automata a RESET jelre az A állapotba kerül.
X | 0 | 1 |
A | B\0 | B\0 |
B | C\1 | A\1 |
C | C\1 | A\0 |
Átmenetek:
- A -> B
- B -> C,A
- C -> C,A
RESET | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
X | - | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
állapot | A | B | A | B | C | C | A | B |
2008 őszi pótZH
1. Feladat
Graetz típusú egyenirányító:
a) Jelölje a váltakozó áramú bemenetet és az egyenáramú kimenetet, jelölje a polaritást is!
b) Rajzolja fel a kimeneten megjelenő jel alakját abban az esetben, ha a bemenetre frekvenciájú szinuszos feszültséget kapcsolunk!
A transzfer karakterisztika segítségével megrajzolható, hogy milyen a kimenet.
c) Adja meg az egyenirányított jel váltakozó komponensének frekvenciáját!
A lüktető egyenáram frekvenciája a váltóáram duplája.
2. Feladat
Ugyanaz mint az előzőben (azonos frekvenciájú szinuszos...)
3. Feladat
Adja meg a szimmetrikus négyszögjel amplitúdóspektrumát! Hogyan változik a spektrum, ha a szimmetria megsérül (az előjelváltás nem pontosan félperiódusonként következik be)? A spektrumot jellegre helyes ábrán szemléltesse!
A spektrum: frekvenciájú négyszögjel összetevői frekvenciákon vannak, ahol páratlan szám. Az egyes összetevők amplitúdói a frekvencia növekedtével szerint csökkennek.
Az alapfrekvencia páratlanszámú többszörösein jelennek meg összetevők csökkenő amplitúdóval, azaz f frekvenciájú négyszögjelnek lesz összetevője frekvenciákon, ez a végtelenig tart elméletileg. (ugyanis a négyszögjel végtelen sok ilyen szinuszból állítható elő tökéletesen)
Ha nem szimmetrikus a négyszögjel, akkor megjelennek a páros számú többszörösei is az alapharmonikusnak.
4. Feladat
Három és ötvezetékes mérés. Milyen esetekben fontos az ötvezetékes?
Hárompólus négykapcsú mérésénél ötvezetékes mérést kell használnunk, impedanciák áramát G pontba tereljük.
5. Feladat
Egy 600 -os forrást TELECOM transzformátor segítségével 600 -os terheléshez illesztünk. A transzformátor primer és szekunder ellenállása 25,3 . Számítsa ki a transzformátor áttételét!
Képlet: ahol:
- - generátor belső ellenállása
- - tekercsek DC ellenállása
- - terhelő ellenállás
- - menetszám áttétel n =
Tehát:
6. Feladat
TTL inverter transzfer karakterisztikájának mérés:
- Rajzolja fel a mérési elrendezést
- Határozza meg milyen gerjesztést alkalmazna
- Ábrázolja a gerjesztő jel és az inverter arra adott válaszának időfüggvényét egy ábrán. Ne feledkezzen meg az _y_ tengely (feszültség) helyes skálázásáról!
A mérésen 0V alapszintű 5 nagyságú kb. 350Hz-es jellel kellett vizsgálni XY üzemmódban (mindképpen pozitív feszültség kell, hiszen a TTL áramkörök a negatív feszültséget levágják)
7. Feladat
Rajzolja fel a bipoláris tranzisztor h21 paraméterének mérésére szolgáló mérési összeállítást! Röviden ismertesse a mérés lépéseit!
Közös emitteres kapcsolás, áramgenerátorosan meghajtjuk a bázis felől (feszgenerátor, és a bemeneti ellenálláshoz képest sokkal nagyobb ellenállás) és UCE=állandó az a kimeneti ellenálláshoz képest rövidzár (gyakorlatilag árammérő-vel kell lezárni). értékéből számítható.
Itt van elrendezés: Laboratórium 1 - 2006 őszi ZH megoldások
8. Feladat
Egy ciklikusan működő állapotgép 2MHz-es órajellel működik. Az állapotgép 3 bites állapotai: 100, 010, 001. A többi kód nem fordulhat elő. Logikai analizátorral hogyan ellenőrizné, hogy nem lép hibás kódú állapotba a hálózat?
A logikai analizátor adat bemeneteire csatlakoztatjuk a számláló kimeneteit. Állapotanalízis üzemmódot állítunk be, a számláló órajele a mintavevő órajel. 2MHz-en ellenőrizzük, hogy a számláló állapotai megfelelnek-e az állapotgép működésének.
9. Feladat
Neptun kód átvitele 2 Stopbittel:
- Neptun kód: 6 karakter
- 1 karakter átvitele: 1 start bit + 8 adatbit(maga a karakter) + 2 stop bit (paritás nem volt megadva az +1 bit lenne még.)
- Tehát 1 karakter átvitele 11bit küldésével történik, innen 6 karakter = 66 bit
4-féle átviteli sebesség(gondolom) | számolás | neptun kód átviteléhez szükséges idő: |
19200 bps | 66/19200 | 0.00343 sec |
38400 bps | 66/38400 | 0.00171 sec |
57600 bps | 66/57600 | 0.00114 sec |
115200 bps | 66/115200 | 0.00057 sec |
10. Feladat
Hogyan tesztelne le egy FPGA-ban megvalósított, viszonylag kevés állípotú szinkron sorrendi hálózatot, ha a logikai analizátor áll rendelkezésre és az FPGA-ban még sok erőforrás van kihasználatlanul (bőven van hely további hardver megvalósításához)?