„Analízis (MSc) típusfeladatok” változatai közötti eltérés
→Nem lineáris egyenletek numerikus megoldása: bugfix (remelhetoleg) |
|||
654. sor: | 654. sor: | ||
<big>2)</big> <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | <big>2)</big> <small>[2016ZH2]</small> Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | ||
{{Rejtett | {{Rejtett | ||
663. sor: | 662. sor: | ||
* Húrmódszer: | * Húrmódszer: | ||
<math>|I| \frac{max_I|f''|}{2 min_I|f'|} = |I| \frac{e^ | <math>|I| \frac{max_I|f''|}{2 min_I|f'|} = |I| \frac{e^2}{2(e^1 - 1)} < 1</math> | ||
Vagyis az algoritmus konvergens, ha <math>|I| < \frac{ | Vagyis az algoritmus konvergens, ha <math>|I| < 2\frac{e-1}{e^2} = 2(e^{-1} - e^{-2})</math> | ||
}} | }} | ||
A lap 2016. június 2., 15:47-kori változata
Az Analízis I. (MSc) tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni.
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dot{x}(t) = 2y(t) - x(t) + 1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \dot{y}(t) = 3y(t) - 2x(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(0) = 0,~y(0) = 1}
- Vegyük mindkét egyenlet Laplace trafóját (Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X := \mathcal{L}(x),~ Y := \mathcal{L}(y)} ):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle sX - x(0) = 2Y - X + \frac{1}{s}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle sY - y(0) = 3Y - 2X}
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (s+1)X + (-2)Y = \frac{1}{s}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (2)X + (s-3)Y = 1}
- Mátrixos alakra hozva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}\frac{1}{s} \\ 1\end{bmatrix}}
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X = \frac{det\left(\begin{bmatrix}\frac{1}{s} & -2 \\ 1 & s-3\end{bmatrix}\right)}{det\left(\begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix}\right)} = \frac{\frac{s-3}{s} + 2}{(s+1)(s-3)+4} = \frac{3 (s-1)}{s(s^2 - 2s + 1)} = \frac{3 (s-1)}{s(s-1)^2} = \frac{3}{s(s-1)}}
- Az inverz laplacehoz bontsuk parciális törtekre:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{A}{s} + \frac{B}{s-1} = \frac{A(s-1) + Bs}{s(s-1)} = \frac{3}{s(s-1)}}
- Együtthatókat összehasonlítva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A + B = 0, -A = 3}
- Ahonnan:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A = -3,~B = 3}
- Vagyis Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X(s) = \frac{-3}{s} + \frac{3}{s-1}}
- Tehát a táblázat alapján Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = -3 + 3e^t}
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \ddot{x}(t) = 2x(t) - 3y(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \ddot{y}(t) = x(t) - 2y(t)}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1}
- Vegyük mindkét egyenlet Laplace trafóját:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s^2X - sx(0) - \dot{x}(0) = 2X - 3Y}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s^2Y - sy(0) - \dot{y}(0) = X - 2Y}
- Átrendezve és mátrixos alakra hozva:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}0 \\ 1\end{bmatrix}}
- Megoldás X-re:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle X = \frac{det\left(\begin{bmatrix}0 & 3 \\ 1 & s^2+2\end{bmatrix}\right)}{det\left(\begin{bmatrix}s^2-2 & 3 \\ -1 & s^2+2\end{bmatrix}\right)} = \frac{-3}{(s^2-2)(s^2+2)+3} = \frac{-3}{s^4-1} = \frac{-3}{(s^2-1)(s^2+1)}}
- Parc törtek:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{A}{s^2-1} + \frac{B}{s^2+1} = \frac{(A+B)s^2 + (A-B)}{s^4-1} = \frac{-3}{s^4-1}}
- Ahonnan:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A = -\frac{3}{2},~B = \frac{3}{2}}
- Inverz Laplace után: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x(t) = -\frac{3}{2}sht + \frac{3}{2}sint}
3) [2016ZH1] Transzformáljuk elsőrendűvé a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'' + xy' = x} differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
- Számítsuk ki a tagok Laplace trafóját (x szerint):
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}_x(y'') = s^2 Y - s y(0) - y'(0)}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}_x(xy') = \mathcal{L}_x(xf(x)) = -(\mathcal{L}_x(f(x)))' = -(\mathcal{L}_x(y'))' = -(s Y(s) - y(0))' = -(s' Y(s) + s Y'(s)) = -Y - sY' }
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}_x(x) = \frac{1}{s^2}}
- Tehát az egyenlet Laplace transzformáltja (elsőrendű Y-ban):
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{x \to 0+}f'(x) = ?, ~ \lim_{x \to 0+}f''(x) = ?, ha ~\mathcal{L}(f) = \frac{s^2-3s+1}{5s^4-4s^3+8}}
- Számoljuk ki Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'(f)} -et!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'(f) = s\mathcal{L}(f) - \lim_{x \to 0+}f(x)}
- Vegyük ennek az egyenletnek a végtelenben vett határértékét:
- Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{s \to \infty}\mathcal{L}'(f)=0}
- Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0}
- Tehát:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 = 0 - f(0+)}
- Amiből:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(0+) = 0}
- Csináljuk meg ugyanezt Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}''(f)} -re!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}''(f) = s^2\mathcal{L}(f) - sf(0+) - f'(0+)}
- Vagyis:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 = \frac{1}{5} - 0 - f'(0+)}
- Amiből:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f'(0+) = \frac{1}{5}}
- Végül csináljuk meg ugyanezt Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'''(f)} -re!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{L}'''(f) = s^3\mathcal{L}(f) - s^2f(0+) - sf'(0+) - f''(0+)}
- Itt a határérték picit bonyolultabb:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0 = lim_{s \to \infty}(\frac{s}{5} - 0 - \frac{s}{5} - f''(0+))}
- Amiből:
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével! Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle y'(x) - 4y(x) = 8}
- Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle Y = \mathcal{F}(y)} )!:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle isY - 4Y = 8\sqrt{2\pi}\delta(s)}
- Átrendezve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -i(s+4i)Y = 8\sqrt{2\pi}\delta(s)}
- Aminek a disztribúció értelemben vett megoldás Y-ra:
- Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s+4i \neq 0} , akkor leoszthatunk vele.
- Ha , akkor , vagyis bármilyen konstans lehet, ezt jelöljük pl c-vel.
- Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a a nevezőben lévő s-be is nullát helyettesít):
- Vagyis:
- Aminek vegyük az inverz Fourier transzformáltját:
- Megjegyzés: A táblázatban szerepel , de nekünk inverz trafó kell
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
- Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint):
- Vagyis az egyenlet Fourier trafója (elsőrendű diff-egyenlet -ra):
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Vezessük be a jelölést!
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
- Nézzük meg, hogy egy függvényre hogyan viselkedik a feladatban szereplő disztribúció!
- Vagyis:
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
- Elődáson volt, hogy
- Ezt felasználva alkalmazzuk a disztribúciót a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
- Ha , akkor leoszthatunk vele, és azt kapjuk, hogy .
- Ha , akkor , vagyis bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel.
- Tehát ha , akkor , ha , akkor tetszőleges értékű, ez röviden:
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
- Először szabaduljunk meg a konvulúciótól:
- Az , ezt bármilyen függvényre alkalmazva visszakapjuk az eredeti függvény (a sima zárójeles jelölés a disztribúció használatára itt nagyon félreérthető):
- Majd értékeljük ki a disztribúciót a függvényen:
Wavelet trafók
Megjegyzés: a kitevőbe írt törtek (pl: ) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_{R}e^{-x^2 / 2}dx=\sqrt{2\pi}.~W_{\psi}g_a(b) = ?}
a) A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi}(y) = \mathcal{F}(e^{-x^2 / 2}) - \mathcal{F}(x^2 \cdot e^{-x^2 / 2}) = \mathcal{F}(e^{-x^2 / 2}) - \frac{\mathcal{F}(e^{-x^2 / 2})''}{(-i)^2} = \mathcal{F}(e^{-x^2 / 2}) + \mathcal{F}(e^{-x^2 / 2})''}
A táblázatban nincs benne, de közismert, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(e^{-x^2 / 2}) = e^{-y^2 / 2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi}(y) = e^{-y^2 / 2} + (e^{-y^2 / 2})'' = e^{-y^2 / 2} + (-y(e^{-y^2 / 2}))' = e^{-y^2 / 2} -e^{-y^2 / 2} + y^2(e^{-y^2 / 2}) = y^2(e^{-y^2 / 2})}
A táblázatból kiolvasott képletbe behelyettesítve:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \left(\sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}\right) \cdot \left((ay)^2(e^{-(ay)^2 / 2})\right)}
b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = <\psi_{a, b}, g> = \int_{-\infty}^{\infty} (1 - \frac{x-b}{a}^2)e^{-((x-b)/a)^2 / 2} x^2 dx}
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle u = \frac{x-b}{a},~x = au + b,~ dx = a \cdot du}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = \int_{-\infty}^{\infty} (1 -u^2)e^{-u^2 / 2} (au + b)^2 a \cdot du}
Használjuk ki, hogy korábban már kiszámoltuk, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (e^{-u^2 / 2})'' = -(1 -u^2)e^{-u^2 / 2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = -a \int_{-\infty}^{\infty}(e^{-u^2 / 2})'' (au + b)^2 du}
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle W_{\psi}g_a(b) = -a \left( \left[(e^{-u^2 / 2})' (au + b)^2\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}(e^{-u^2 / 2})' 2a \cdot (au + b) du \right) = 2a^2 \int_{-\infty}^{\infty}(e^{-u^2 / 2})' \cdot (au + b) du = 2a^2 \left( \left[e^{-u^2 / 2} (au + b) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}e^{-u^2 / 2} \cdot a du \right) = -2a^3 \sqrt{2\pi}}2) [2016ZH1] A Poisson wavelet a következő: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}}
a) Mutassuk meg, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = -(\frac{x^n}{n!} e^{-x})'} , ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle x \geq 0}
b) Mutassuk meg, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_R \psi_n(x)dx = 0}
c) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_{\psi_n} = ?}
a) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -(\frac{x^n}{n!} e^{-x})' = -n\frac{x^{n-1}}{n!} e^{-x} + \frac{x^n}{n!} e^{-x} = x\frac{x^{n-1}}{n!} e^{-x}-n\frac{x^{n-1}}{n!} e^{-x} = \frac{x-n}{n!} x^{n-1} e^{-x}}
b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int_R \psi_n(x)dx = \int_0^\infty -(\frac{x^n}{n!} e^{-x})' dx = -\left[\frac{x^n}{n!} e^{-x}\right]_0^\infty = 0}
c) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy}
Először számoljuk ki a wavelet Fourier trafóját (felhasználom, hogy Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathcal{F}(-f') = -iy\mathcal{F}(f),~\mathcal{F}(x^n f) = i^n \mathcal{F}(f)^{(n)}} ):
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{\psi} = \mathcal{F}(-(\frac{x^n}{n!} e^{-x})' \cdot H(x)) = -\frac{iy}{n!} \mathcal{F}(x^n e^{-x}H(x)) = -\frac{iy}{n!} i^n \mathcal{F}(e^{-x}H(x))^{(n)} = -\frac{iy}{n!} i^n \left(\frac{1}{\sqrt{2\pi}} \frac{1}{1+iy}\right)^{(n)} =}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle = -\frac{iy}{n!} i^n i^n (-1)(-2) \dots(-n) \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{n!}{n!} (-1)^n (-1)^n \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}} = -iy \frac{1}{\sqrt{2\pi}} \frac{1}{(1+iy)^{n+1}}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C_{\psi_n} = 2 \pi \int_{-\infty}^\infty \frac{\left| \hat{\psi} \right|^2}{|y|} dy = 2 \pi \int_{-\infty}^\infty \frac{1}{2\pi} \frac{|y|^2}{|y|}\frac{1}{(1+y^2)^{n+1}} dy = \int_{0}^\infty \frac{2 y}{(1+y^2)^{n+1}} dy = -\frac{1}{n} \left[\frac{1}{(1+y^2)^n}\right]_0^\infty = -\frac{1}{n} (0 - 1) = \frac{1}{n}}3) [2016PZH] Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi(x) = xe^{-|x|}, f(x) = e^{-x^2/2}} . Adjuk meg f Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \psi} által generált wavelet transzformáltjának Fourier transzformáltját!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \hat{f}(x) = e^{-y^2/2} }
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
- Az -t keressük szorzat alakban:
- A diffegyenlet így átírva:
- Ez így már szeparálható:
- Figyeljünk arra, hogy a deriváltak a számlálóban legyenek
- A szeparálás utáni hányadosokról pedig tudjuk, hogy negatívak (innen jön a )
- Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel.
- Az első két féltétel átírva: , minden t-re, vagyis
- Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet!
- Oldjuk meg a diff-egyenletet:
- Írjuk fel a karakterisztikus függvényt!
- Vagyis a diff-egyenlet megoldása:
- Vizsgáljuk meg a kezdeti feltételeket:
Ami csak olyan egész k értékekre teljesülhet, amikre:
- Most oldjuk meg a diff-egyenletet T(t)-re, de a b helyére az újonnan kapott képletet írjuk be.
- A T-re vonatkozó (k-tól függő) diff-egynelet:
- Az -re vonatkozó k-tól függő egyenlet tehát:
- Vezessük be az és konstansokat!
- Az pedig felírható az -k összegeként az összes k-ra.
- A maradék két feltétel segítségével számoljuk ki az és konstansok értékeit.
Amiből az együtthatók összehasonlításával megkapjuk, hogy , minden más , ha
- A másik feltételhez ki kell számolni az -t.
- A feltételbe beírva:
Innen pedig: , minden más pedig nulla.
Vagyis a megoldás:
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Először oldjuk meg x-re:
A -hoz tartozó megoldás nem érdekel minket, tehát .
Az X azonosan nulla megoldás megint nem érdekel minket, így:
Most oldjuk meg a T-re vonatkozó diff-egyenletet
Írjuk fel -t!
Majd pedig az ebből generált sort:
, minden más pedig nulla.
Vagyis:
.Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
- Írjuk fel a diffegyenletet véges differenciákkal:
- Írjuk fel a differál-egyenletet differa-egyenlet formában!
- Közös nevezőre hozva:
- Na most felejtsük, hogy delta nullához tart, és válasszunk ki egy megfelelően kicsi értéket vízszintes (h) és függőleges (k) irányban. A folytonos függvény helyett pedig használjuk egy ilyen lépésközönként mintavételezett diszkrét függvényt, ahol jeletése .
- Válasszuk meg a feladatban adott h értékhez a k értékét, hogy az egyenletből a lehető legtöbb tag kiessen (jelen esetben a választás célszerű).
- Fejezzük ki -et az egyenletből.
- Ennek a képletnek a rekurzív alkalmazásával el tudunk jutni a peremfeltételtől az u_{1,2} értékig.
- Innen az és a ismert a peremfeltétel alapján, de az -ért még számolnunk kell.
- Az -hez a nullában vett t szerinti deriváltra vonatkozó feltételt kell használni:
- Vagyis:
- A kért pont tehát kiszámolható az alábbi peremen található értékekből (papíron egyszerűbb felvenni egy négyzetrácsot az értékeknek, és mindenhova odaírni az adott értéket):
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Az egyszerű számolás miatt legyen
Ez alapján a keresett érték:
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
- Először meg kell határozni B sajátértékeit. Ezt a egyenlet megoldásaiként kapjuk meg. Most az -os szorzó miatt inkább számoljuk azzal, hogy
- Fejtsük ki a determinánst az első oszlop szerint:
- Most határozzunk meg minden sajátértékhez egy sajátvektort (itt az -os szorzó nem számít, a sajátvektor csak konstans szorzó erejéig egyértelmű)
- Először a -hoz keresünk két sajátvektort:
- Mindhárom egyenletünk megegyezünk, az y legyen mondjuk 1, ekkor a z-nek -2-nek kell lennie, az x tetszőleges. Az x=0 és az x=1 két lineáris független sajátvektort ad.
- Határozzuk meg a -höz tartozó sajátvektort is:
- Tehát egy sajátvektor például:
- A Jordan-normál forma (sajátértékek főátalóban, itt már számít a skalár szorzó) és a transzformációs mátrix (sajátvektorok alkotta mátrix):
- A végeredményt az alábbi alakban kapjuk majd meg: . Ehhez viszont először invertálni kell T-t.
- Gauss-elimináljunk!
- Számoljuk ki -t!
- A végeredmény tehát (a mátrix szorzásokat már nem kell elvégezni):
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
a) A húrmódszer konvergens ha a tartomány összes pontján.
Ez megadja, hogy max mekkora lehet az intervallum hossza, hogy az algoritmus konvergáljon. Gyakorlatban azt szoktuk vizsgálni, hogy a számláló maximuma és a nevező minimuma esetén is teljesül-e a feltétel, ami egy szűkebb feltétel, de becslésnek jó.
Számoljuk ki a deriváltakat!
Nézzük meg ezeknek a minimumát és maximumát (csak a tartomány szélei érdekesek, nincs lokális minimuma, tehát az x helyére mindenhova négyet vagy ötöt írunk)
b) Az iteráció konvergens ha a tartomány összes pontján.
Tehát a tartomány egyetlen pontjára se teljesül a konvergencia szükséges feltétele, azaz az iteráció nem konvergens.
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
- Iteráció: , az [1, 2] intervallum összes pontján. Ebből következik, hogy az iteráció bármely részintervallumon divergens lesz, tehát nem használható.
- Húrmódszer:
Vagyis az algoritmus konvergens, ha
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Az intervallumfelezés esetén minden lépésben megfelezzük az intervallumot (meglepő mi? :D), szóval k lépés után a pontossága:
A iteráció esetében a pontosság -el szorzódik meg minden iteráció után. Ha ez kisebb, mint , akkor ez a módszer gyorsabban konvergál, mint az intevallum felezés.
Az [1,2] tartományon ennek a maximuma ami nagyobb, mint 1, ezért itt az iteráció még csak nem is konvergens. A [2, 3] tartományon a maximum , tehát itt az iteráció gyorsabban konvergál.
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
- Vezessük be az alábbi függvényt:
- A szélsőérték akkor létezhet, ha az összes változó szerinti derviált nulla:
Az első egyenlet 2x szeresét a második egyenlet y szorosával egyenlővé téve:
Azaz vagy
- eset: (ellentmondás: x, y, z pozitív a feladat szerint)
- eset:
Az második egyenlet 3y szeresét a harmadik egyenlet 2z szeresét egyenlővé téve:
Vagyis (ismerve, hogy ):
A definitséghez szükség van ebben a pontban a feltétel gradiensére:
Illetve a gradiensre merőleges vektorok alakjára (skalárszorzat alapján: )
Ezen kívül még az F Hesse mátrixa is kelle fog ebben a pontban:
A definitséghez szorozzuk meg a Hesse mátrixot a gradiensre merőleges vektorokkal mindkét oldalról:
Ennek az előjele lehet pozitív és negatív is x és y értékétől függően, vagyis a mátrix indefinit, azaz itt nincs szélsőérték.
(Ha mindig pozitív lett volna, az minimum helyet jelölt volna, ha mindig negatív akkor maximum, ha mindig nulla, akkor pedig nyereg pont.)2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
A harmadik egyenletből:
Azaz vagy
- eset: ,
- eset:
Az első egyenletből:
Az második egyenletből egyenletből:
(x = 0: ellentmondás)
A negyedik egyenlet alapján:
Vagyis a megoldások (4 db):
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Vonjuk ki a második egyenletből a harmadikat:
Azaz vagy
A második és harmadik egyenlet is azt adja, hogy:
Az első egyenlet alapján:
Tehát a két megoldás (a negyedik egyenlet alapján):
- eset
A második egyenletből:
Az első egyenletbe írva:
Azaz , ellentmondás.
A szélsőértékek jellege:
Az adott pontokban:
Az erre merőleges vektorok:
A Hesse mátrix:
A definitség:
Ez indefinit, itt nincs szélsőérték.Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
Ez a feladattípus arról szól, hogy használjuk az Euler-Lagrange (EL) egyenletet:
- Vegyük észre, hogy két különböző deriváltjel szerepel a képletben, és ezek mást jelentenek.
- A azt jelenti, hogy csak az -et közvetlenül tartalmazó tagokat deriváljuk, de az -től függő függvényt már konstansnak (független változónak) tekintjük a deriválás szempontjából.
- A esetében mindent deriválunk szerint, ami függ -től.
Az f függvény, amire alkalmazni kell az EL-t, az az integrál belseje: . Ha lenne feltétel is, akkor ugyanúgy be kéne vezetni egy függvényt, és arra kéne megoldani az EL-t.
A kezdeti felételeket felhasználva:
Tehát , azaz a megoldás:
.2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
Vezessünk be egy változót, és erre oldjuk meg a differenciálegyenletet (ha az egyenletből az x hiányozna, akkor y szerinti deriválásra kéne áttérni).
Írjuk vissza az y'-t p helyére
Ez egy sokkal nehezebb integrál, mint ami ZH-kon elő szokott fordulni.
Amúgy elvileg megoldható és helyettesítéssel meg néhány trigonometrikus összefüggés felhasználásával, és ez lesz a eredménye:
A két kezdeti feltételt felhasználva ki lehet számolni a két konstans értékét (). De analitikusan ez még a Mathematica-nak sem sikerült. Persze lehet próbálkozni numerikus módszerekkel :p
Valami nagyon el van b*va ezzel a feladattal.
https://s-media-cache-ak0.pinimg.com/236x/55/08/4b/55084be16a6b92e2cdb97951f371f4df.jpg