|
|
12. sor: |
12. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Vegyük mindkét egyenlet Laplace trafóját (<math>X := \mathcal{L}(x),~ Y := \mathcal{L}(y)</math>): | | * Vegyük mindkét egyenlet Laplace trafóját (<math>X := \mathcal{L}(x),~ Y := \mathcal{L}(y)</math>): |
59. sor: |
59. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Vegyük mindkét egyenlet Laplace trafóját: | | * Vegyük mindkét egyenlet Laplace trafóját: |
89. sor: |
89. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Számítsuk ki a tagok Laplace trafóját (x szerint): | | * Számítsuk ki a tagok Laplace trafóját (x szerint): |
106. sor: |
106. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Számoljuk ki <math>\mathcal{L}'(f)</math>-et! | | * Számoljuk ki <math>\mathcal{L}'(f)</math>-et! |
137. sor: |
137. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: <math>Y = \mathcal{F}(y)</math>)!: | | * Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: <math>Y = \mathcal{F}(y)</math>)!: |
161. sor: |
161. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint): | | * Számítsuk ki az egyenlet tagjainak Fourier trafóját (x szerint): |
176. sor: |
176. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| Vezessük be a <math>g(x) = e^{-x}H(x)</math> jelölést! | | Vezessük be a <math>g(x) = e^{-x}H(x)</math> jelölést! |
188. sor: |
188. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Nézzük meg, hogy egy <math>\varphi</math> függvényre hogyan viselkedik a feladatban szereplő disztribúció! | | * Nézzük meg, hogy egy <math>\varphi</math> függvényre hogyan viselkedik a feladatban szereplő disztribúció! |
199. sor: |
199. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Elődáson volt, hogy <math>(T * \delta') = T'</math> | | * Elődáson volt, hogy <math>(T * \delta') = T'</math> |
211. sor: |
211. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| <math>f = c \cdot \delta(x-3)</math> | | <math>f = c \cdot \delta(x-3)</math> |
223. sor: |
223. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| <math>e^{3x}\delta''(x-2)(\varphi) = \delta''(x-2)(e^{3x}\varphi) = \delta(x-2)((e^{3x}\varphi)'') = \delta(x-2)((3e^{3x}\varphi + e^{3x}\varphi')') = </math> | | <math>e^{3x}\delta''(x-2)(\varphi) = \delta''(x-2)(e^{3x}\varphi) = \delta(x-2)((e^{3x}\varphi)'') = \delta(x-2)((3e^{3x}\varphi + e^{3x}\varphi')') = </math> |
232. sor: |
232. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Először szabaduljunk meg a konvulúciótól: | | * Először szabaduljunk meg a konvulúciótól: |
252. sor: |
252. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
|
| |
|
310. sor: |
310. sor: |
|
| |
|
| {{Rejtett | | {{Rejtett |
| |mutatott='''Megoldás:''' | | |mutatott=Megoldás: |
| |szöveg= | | |szöveg= |
| * Az <math>U(x, t)</math>-t keressük szorzat alakban: <math>U(x, t) = X(x)T(T)</math> | | * Az <math>U(x, t)</math>-t keressük szorzat alakban: <math>U(x, t) = X(x)T(T)</math> |
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját ():
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
- Az inverz laplacehoz bontsuk parciális törtekre:
- Együtthatókat összehasonlítva:
- Vagyis
- Tehát a táblázat alapján
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját:
- Átrendezve és mátrixos alakra hozva:
- Inverz Laplace után:
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
Megoldás:
- Vegyük az egyenlet Fourier trafóját (a táblázatban a Fourier trafó y függvénye, de az y itt mást jelent, a táblázatbeli y-ok helyére írjuk s-t, illetve vezessük be az alábbi jelölést: )!:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle -i(s+4i)Y = 8\sqrt{2\pi}\delta(s)}
- Aminek a disztribúció értelemben vett megoldás Y-ra:
- Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle s+4i \neq 0}
, akkor leoszthatunk vele.
- Ha , akkor , vagyis bármilyen konstans lehet, ezt jelöljük pl c-vel.
- Az összeg jobboldali tagja egyszerűsíthető, ha kihasználjuk, hogy az egy disztribúció (a a nevezőben lévő s-be is nullát helyettesít):
- Aminek vegyük az inverz Fourier transzformáltját:
- Megjegyzés: A táblázatban szerepel , de nekünk inverz trafó kell
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Megoldás:
Vezessük be a jelölést!
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
Megoldás:
- Ha , akkor leoszthatunk vele, és azt kapjuk, hogy .
- Ha , akkor , vagyis bármilyen konstans értéket felvehet, ezt jelöljük pl c-vel.
- Tehát ha , akkor , ha , akkor tetszőleges értékű, ez röviden:
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
Megoldás:
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
Megoldás:
- Először szabaduljunk meg a konvulúciótól:
- Majd értékeljük ki a disztribúciót (ez egy közismert integrál, de viszonylag nehéz kiszámolni):
Wavelet trafók
Megjegyzés: a kitevőbe írt törtek (pl: ) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy
Megoldás:
a)
A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül:
A táblázatban nincs benne, de közismert, hogy
A táblázatból kiolvasott képletbe behelyettesítve:
b)
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet:
Használjuk ki, hogy korábban már kiszámoltuk, hogy
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt:
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Megoldás:
- Az -t keressük szorzat alakban:
- A diffegyenlet így átírva:
- Ez így már szeparálható (figyeljünk arra, hogy a deriváltak a számlálóban legyenek):
- Nézzük meg, hogy melyik változóra van feltételünk, aminek a jobb oldalán konstans szerepel.
- Az első két féltétel átírva: X(0)T(t) = X(3)T(t) = 0, minden t-re, vagyis X(0) = X(3) = 0
- Tehát az X-re van a T-től nem függő feltételünk, ezért először az X-re oldjuk meg a diffegyenletet!
- Oldjuk meg a diff-egyenletet:
- Írjuk fel a karakterisztikus függvényt!
- Vagyis a diff-egyenlet megoldása:
- Vizsgáljuk meg a kezdeti feltételeket:
Ami csak olyan egész k értékekre teljesülhet, amikre:
- Most oldjuk meg a diff-egyenletet T(t)-re, de a b helyére az újonnan kapott képletet írjuk be.
- A T-re vonatkozó (k-tól függő) diff-egynelet:
- Az -re vonatkozó k-tól függő egyenlet tehát:
- Vezessük be az és konstansokat!
- Az pedig felírható az -k összegeként az összes k-ra.
- A maradék két feltétel segítségével számoljuk ki az és konstansok értékeit.
Amiből az együtthatók összehasonlításával megkapjuk, hogy , minden más , ha
- A másik feltételhez ki kell számolni az -t.
Innen pedig:
, minden más pedig nulla.
Vagyis a megoldás:
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!