„Analízis (MSc) típusfeladatok” változatai közötti eltérés
242. sor: | 242. sor: | ||
== Wavelet trafók == | == Wavelet trafók == | ||
Megjegyzés a kitevőbe írt törtek (pl: <math>e^{-\frac{x^2}{2}}</math>) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni. | |||
<hr> | |||
1) <small>[2015ZH1]</small> Legyen <math>\psi(x) = (1 - x^2)e^{-x^2 / 2}</math>, a mexikói kalap wavelet. | 1) <small>[2015ZH1]</small> Legyen <math>\psi(x) = (1 - x^2)e^{-x^2 / 2}</math>, a mexikói kalap wavelet. | ||
252. sor: | 255. sor: | ||
|szöveg= | |szöveg= | ||
a) A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: <math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}</math> | a) | ||
A wavelet Fourier trafóját közvetlenül megkaphatjuk a wavelet kiértékelése nélkül: <math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \hat{f}(y) \cdot \overline{\hat{\psi}(ay)}</math> | |||
<math>\hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}</math> | <math>\hat{f}(y) = \sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}</math> | ||
265. sor: | 269. sor: | ||
<math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \left(\sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}\right) \cdot \left((ay)^2(e^{-(ay)^2 / 2})\right)</math> | <math>\mathcal{F}(W_{\psi}f_a(b)) = \sqrt{|a|} \cdot \sqrt{2\pi} \left(\sqrt{\frac{2}{\pi}} \frac{1}{1 + y^2}\right) \cdot \left((ay)^2(e^{-(ay)^2 / 2})\right)</math> | ||
<hr> | |||
b) <math>W_{\psi}g_a(b) = <\psi_{a, b}, g> = \int_{-\infty}^{\infty} (1 - \frac{x-b}{a}^2)e^{-((x-b)/a)^2 / 2} x^2 dx</math> | |||
Helyettesítésel integrállal tegyük egyszerűbbé a fenti képletet: <math> u = \frac{x-b}{a},~x = au + b,~ dx = a \cdot du</math> | |||
<math>W_{\psi}g_a(b) = \int_{-\infty}^{\infty} (1 -u^2)e^{-u^2 / 2} (au + b)^2 a \cdot du</math> | |||
Használjuk ki, hogy korábban már kiszámoltuk, hogy <math>(e^{-u^2 / 2})'' = -(1 -u^2)e^{-u^2 / 2}</math> | |||
<math>W_{\psi}g_a(b) = -a \int_{-\infty}^{\infty}(e^{-u^2 / 2})'' (au + b)^2 du</math> | |||
Amit kétszer parciálisan integrálva meg is kapjuk az eredményt: | |||
<math>W_{\psi}g_a(b) = -a \left( \left[(e^{-u^2 / 2})' (au + b)^2\right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}(e^{-u^2 / 2})' 2a \cdot (au + b) du \right) = | |||
2a^2 \int_{-\infty}^{\infty}(e^{-u^2 / 2})' \cdot (au + b) du = 2a^2 \left( \left[e^{-u^2 / 2} (au + b) \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty}e^{-u^2 / 2} \cdot a du \right) = -2a^3 \sqrt{2\pi}</math> | |||
}} | }} | ||
A lap 2016. május 25., 14:40-kori változata
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
Wavelet trafók
Megjegyzés a kitevőbe írt törtek (pl: ) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!