„Analízis (MSc) típusfeladatok” változatai közötti eltérés
| 116. sor: | 116. sor: | ||
2) [2016ZH2] Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | 2) [2016ZH2] Tekintsük az <math>e^x - 2 = x</math> egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? | ||
3) [2016PZH] Az <math>arsh 2x = x</math> egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n? | |||
== Lagrange multiplikátor módszer == | == Lagrange multiplikátor módszer == | ||
| 121. sor: | 123. sor: | ||
2) [2016ZH2] Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!) | 2) [2016ZH2] Hol lehet feltételes szélsőértéke a <math>3x^2 + y^2 + z^2 - xy</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!) | ||
3) [2016PZH] Hol lehet feltételes szélsőértéke a <math>x^2 + y^2 + z^2 - 2xy -2xz</math> függvénynek az <math>x^2 + y^2 + z^2 = 1</math> feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét! | |||
== Variáció számítás == | == Variáció számítás == | ||