„Analízis (MSc) típusfeladatok” változatai közötti eltérés
24. sor: | 24. sor: | ||
3) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)! | 3) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)! | ||
== Laplace trafó szabályok alkalmazása == | |||
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket: | |||
<math>\lim_{x \to 0+}f'(x) = ?, ~ \lim_{x \to 0+}f''(x) = ?</math>, | |||
ha f Laplace transzformáltja, <math>\overline{f}(s) = \frac{s^2-3s+1}{5s^4-4s^3+8}</math> | |||
== Fourier diff-egyenlet == | == Fourier diff-egyenlet == | ||
45. sor: | 53. sor: | ||
4) [2016ZH1] Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként! | 4) [2016ZH1] Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként! | ||
5) [2016PZH] Legyen u az <math>f(x) = x - 3</math> által generált reguláris disztribúció, <math>\psi(x) = e^{-x^2}</math>. Számítsuk ki <math>(\sigma_2\tau_3\delta' * u)\psi</math>-t! | |||
== Wavelet trafók == | == Wavelet trafók == | ||
62. sor: | 72. sor: | ||
c) <math>C_{\psi_n} = ?</math> | c) <math>C_{\psi_n} = ?</math> | ||
3) [2016PZH] Legyen <math>\psi(x) = xe^{-|x|}, f(x) = e^{-\frac{x^2}{2}}</math>. Adjuk meg f <math> \psi</math> által generált wavelet transzformáltjának Fourier transzformáltját! | |||
= Numerikus módszerek témakör = | = Numerikus módszerek témakör = |
A lap 2016. május 24., 23:53-kori változata
Integrál trafók témakör
Elmélet
1) [2016ZH1] Milyen függvényosztályra értelmeztük a Laplace transzformációt?
2) [2016ZH1] Írjuk fel a skálázó egyenletet!
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
,
ha f Laplace transzformáltja,
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
Wavelet trafók
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy .
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!