„Analízis (MSc) típusfeladatok” változatai közötti eltérés

A VIK Wikiből
Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
90. sor: 90. sor:


<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math>
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math>
== Jordan normál-forma ==
1) [2016ZH2] Adjuk meg az <math>x = Bx + b</math> egyenlet megoldását, ha <math>B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.</math>


== Nem lineáris egyenletek numerikus megoldása ==
== Nem lineáris egyenletek numerikus megoldása ==

A lap 2016. május 24., 23:43-kori változata

Integrál trafók témakör

Elmélet

1) [2016ZH1] Milyen függvényosztályra értelmeztük a Laplace transzformációt?

2) [2016ZH1] Írjuk fel a skálázó egyenletet!

Laplace trafó diff-egyenlet

1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!

Fourier diff-egyenlet

1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!

2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!

Fourier trafó szabályok alkalmazása

1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy

Disztribúciók

1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!

2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:

3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)

4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!

Wavelet trafók

1) [2015ZH1] Legyen , a mexikói kalap wavelet.

a) Legyen .

b) Legyen . Tudjuk, hogy .

2) [2016ZH1] A Poisson wavelet a következő:

a) Mutassuk meg, hogy , ha

b) Mutassuk meg, hogy

c)

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

Parcdiff egyenletek (véges differenciák)

1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha

2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?

Jordan normál-forma

1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha

Nem lineáris egyenletek numerikus megoldása

1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.

a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?

b) Használható-e a [4, 5] intervallumon az iteráció?

2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?

Lagrange multiplikátor módszer

1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!

2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)

Variáció számítás

1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!

2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!