„Analízis (MSc) típusfeladatok” változatai közötti eltérés
| 90. sor: | 90. sor: | ||
<math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | <math>u(x, 0) = 12\cos\frac{3\pi}{5}x,~\frac{\partial u}{\partial x}(0, t) = ~\frac{\partial u}{\partial x}(5, t) = 0</math> | ||
== Jordan normál-forma == | |||
1) [2016ZH2] Adjuk meg az <math>x = Bx + b</math> egyenlet megoldását, ha <math>B = \frac{1}{6}\begin{bmatrix}3 & 1 & -2 \\ 0 & 4 & -2 \\ 0 & 1 & 1\end{bmatrix},~ b = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}.</math> | |||
== Nem lineáris egyenletek numerikus megoldása == | == Nem lineáris egyenletek numerikus megoldása == | ||