„Analízis (MSc) típusfeladatok” változatai közötti eltérés

Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
3. sor: 3. sor:
== Elmélet ==
== Elmélet ==


1) Milyen függvényosztályra értelmeztük a Laplace transzformációt?
1) [2016ZH1] Milyen függvényosztályra értelmeztük a Laplace transzformációt?


2) Írjuk fel a skálázó egyenletet!
2) [2016ZH1] Írjuk fel a skálázó egyenletet!


== Laplace trafó diff-egyenlet ==
== Laplace trafó diff-egyenlet ==


1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math>
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math>


16. sor: 16. sor:
<math>x(0) = 0,~y(0) = 1</math>
<math>x(0) = 0,~y(0) = 1</math>


2) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math>
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math>


23. sor: 23. sor:
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math>
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math>


3) Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
3) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!


== Fourier diff-egyenlet ==
== Fourier diff-egyenlet ==


1) Oldjuk meg Fourier transzformáció segítségével!
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
<math>y'(x) - 4y(x) = 8</math>
<math>y'(x) - 4y(x) = 8</math>


2) Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
2) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!


== Fourier trafó szabályok alkalmazása ==
== Fourier trafó szabályok alkalmazása ==


1) Számítsuk ki az <math>f(x) = 3xe^{-x}H(x)</math> Fourier transzformáltját, ha tudjuk, hogy <math>F(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}</math>
1) [2015ZH1] Számítsuk ki az <math>f(x) = 3xe^{-x}H(x)</math> Fourier transzformáltját, ha tudjuk, hogy <math>F(e^{-x}H(x)) = \frac{1}{\sqrt{2\pi}}\frac{1}{1+iy}</math>


== Disztribúciók ==
== Disztribúciók ==


1) Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!
1) [2015ZH1] Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!


2) Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math>
2) [2016ZH1] Számítsuk ki a <math>T = e^{-x^2}</math> reguláris disztribúcuó és a <math>\delta'</math> disztribúció konvolúciójának hatását a <math>\psi(x) = x^2</math> függvényre: <math>(T * \delta')x^2 = ?</math>


3) Mi az <math>(x-3)f = 0</math> disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
3) [2016ZH1] Mi az <math>(x-3)f = 0</math> disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)


4) Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként!
4) [2016ZH1] Adjuk meg az <math>e^{3x}\delta''(x-2)</math> disztribúciót a <math>\delta</math> eltolt deriváltjainak lineáris kombinációjaként!


== Wavelet trafók ==
== Wavelet trafók ==


1) Legyen <math>\psi(x) = (1 - x^2)e^{-\frac{x^2}{2}}</math>, a mexikói kalap wavelet.  
1) [2015ZH1] Legyen <math>\psi(x) = (1 - x^2)e^{-\frac{x^2}{2}}</math>, a mexikói kalap wavelet.  


a) Legyen  <math>f(x) = e^{-|x|}</math>. <math>F(W_{\psi}f_a(b)) = ?</math>
a) Legyen  <math>f(x) = e^{-|x|}</math>. <math>F(W_{\psi}f_a(b)) = ?</math>
54. sor: 54. sor:
b) Legyen  <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}</math>. <math>W_{\psi}g_a(b) = ?</math>
b) Legyen  <math>g(x) = x^2</math>. Tudjuk, hogy <math>\int_{R}e^{-\frac{x^2}{2}}dx=\sqrt{2\pi}</math>. <math>W_{\psi}g_a(b) = ?</math>


2) A Poisson wavelet a következő:
2) [2016ZH1] A Poisson wavelet a következő:
<math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math>
<math>\psi_n(x) = H(x) \frac{x-n}{n!} x^{n-1} e^{-x}</math>