„Analízis (MSc) típusfeladatok” változatai közötti eltérés

A VIK Wikiből
Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
59. sor: 59. sor:


<math>u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0</math>
<math>u(0, t) = 3,~ u(3, t) = 0,~u(x,0)=3-x,~\frac{\partial u}{\partial t}(x, 0) = 0</math>
== Nem lineáris egyenletek numerikus megoldása ==
1) Keressük a <math>\sqrt{1 + coshx} - 2 = x</math> egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
== Lagrange multiplikátor módszer ==
1) Keressük meg az <math>f(x, y, z) = xy^2z^3(x,y,z > 0)</math> szélsőértékét az <math>x + 2y + 3z = 6</math> feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
== Variáció számítás ==
1) Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt!
<math>I(y) = \int_{-1}^{2}y'^2 + x^3 - 2xydx</math>
<math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math>
2) Keressük meg az <math>I(y)</math> funkcionálhoz tartozó extremális y függvényt!
<math>I(y) = \int_{-1}^{2}y'^3 + x^3 - 2xydx</math>
<math>y(-1) = \frac{1}{6},~y(2)=\frac{5}{3}</math>

A lap 2016. május 24., 23:51-kori változata

Integrál trafók témakör

Elmélet

1) Milyen függvényosztályra értelmeztük a Laplace transzformációt?

2) Írjuk fel a skálázó egyenletet!

Laplace-trafó diff-egyenlet rendszer

1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha x˙(t)=2y(t)x(t)+1

y˙(t)=3y(t)2x(t)

x(0)=0,y(0)=1

2) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha x¨(t)=2x(t)3y(t)

y¨(t)=x(t)2y(t)

x(0)=x˙(0)=0,y(0)=0,y˙(0)=1

Fourier diff-egyenlet

1) Oldjuk meg Fourier transzformáció segítségével! y(x)4y(x)=8

Fourier trafó szabályok alkalmazása

1) Számítsuk ki az f(x)=3xexH(x) Fourier transzformáltját, ha tudjuk, hogy F(exH(x))=12π11+iy

Disztribúciók

1) Adjuk meg δ és δ lineáris kombinációjaként az e3x2δ(x) disztribúciót!

Wavelet trafók

1) Legyen ψ(x)=(1x2)ex22, a mexikói kalap wavelet.

a) Legyen f(x)=e|x|. F(Wψfa(b))=?

b) Legyen g(x)=x2. Tudjuk, hogy Rex22dx=2π. Wψga(b)=?

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) Oldjuk meg Fourier módszerrel!

2ut2=42ux2

u(0,t)=u(3,t)=0,u(x,0)=sin4π3x,ut(x,0)=2sinπ3x

Parcdiff egyenletek (véges differenciák)

1) Véges differenciák segítségével, h=12 felosztás mellett adjuk meg az u1,2 értékét, ha

2ut2=2ux2

u(0,t)=3,u(3,t)=0,u(x,0)=3x,ut(x,0)=0

Nem lineáris egyenletek numerikus megoldása

1) Keressük a 1+coshx2=x egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.

a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?

b) Használható-e a [4, 5] intervallumon az iteráció?

Lagrange multiplikátor módszer

1) Keressük meg az f(x,y,z)=xy2z3(x,y,z>0) szélsőértékét az x+2y+3z=6 feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!

Variáció számítás

1) Keressük meg az I(y) funkcionálhoz tartozó extremális y függvényt!

I(y)=12y'2+x32xydx

y(1)=16,y(2)=53

2) Keressük meg az I(y) funkcionálhoz tartozó extremális y függvényt!

I(y)=12y'3+x32xydx

y(1)=16,y(2)=53