„Analízis (MSc) típusfeladatok” változatai közötti eltérés

A VIK Wikiből
Csala Tamás (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
Csala Tamás (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
34. sor: 34. sor:
== Disztribúciók ==
== Disztribúciók ==


1) Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót! ====
1) Adjuk meg <math>\delta</math> és <math>\delta'</math> lineáris kombinációjaként az <math>e^{3x-2}\delta'(x)</math> disztribúciót!


== Wavelet trafók ==
== Wavelet trafók ==

A lap 2016. május 24., 22:36-kori változata

Integrál trafók témakör

Elmélet

1) Milyen függvényosztályra értelmeztük a Laplace transzformációt?

2) Írjuk fel a skálázó egyenletet!

Laplace-trafó diff-egyenlet rendszer

1) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

2) Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

Fourier diff-egyenlet

1) Oldjuk meg Fourier transzformáció segítségével!

Fourier trafó szabályok alkalmazása

1) Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy

Disztribúciók

1) Adjuk meg és lineáris kombinációjaként az disztribúciót!

Wavelet trafók

1) Legyen , a mexikói kalap wavelet.

a) Legyen .

b) Legyen . Tudjuk, hogy .

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) Oldjuk meg Fourier módszerrel!

Parcdiff egyenletek (véges differenciák)

1) Véges differenciák segítségével, h=\frac{1}{2} felosztás mellett adjuk meg az u_{1,2} értékét, ha