„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
| 546. sor: | 546. sor: | ||
Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>): | Ezek alapján már felírhatóak a komplex mágneses térerősségvektor komponensei (vigyázat az egységvektorok forognak <math>x \rightarrow y \rightarrow z \rightarrow x</math>): | ||
<math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math> | <math>\vec{H}_z={E_y \over Z_0} \cdot \vec{e}_z \approx 13.26 \cdot e^{j \pi / 3} \cdot \vec{e}_z \;{A \over m}</math> | ||
| 555. sor: | 556. sor: | ||
<math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot \vec{e}_z - 31.83 \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math> | <math>\vec{H}=\vec{H}_z+\vec{H}_x \approx (13.26 \cdot \vec{e}_z - 31.83 \cdot \vec{e}_x) \cdot e^{j \pi / 3} \;{A \over m}</math> | ||
[ A megoldás sztem nem jó, mivel a terjedés iránya <math>\vec{e}_x</math> , ezért <math>\vec{H}=\vec{H}_z+\vec{H}_y</math> ] | |||
}} | }} | ||
=== 58. Feladat: Toroid tekercs fluxusa és energiája=== | === 58. Feladat: Toroid tekercs fluxusa és energiája=== | ||