„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés
| 31. sor: | 31. sor: | ||
<math> \vec{B} = \mu \cdot \vec{H} = \frac{\mu \cdot \hat{I}\cos ( \omega t )}{2 r \pi} \cdot \vec{e}_{\varphi} </math> | <math> \vec{B} = \mu \cdot \vec{H} = \frac{\mu \cdot \hat{I}\cos ( \omega t )}{2 r \pi} \cdot \vec{e}_{\varphi} </math> | ||
==2. | ==2. Végtelen hosszú egyenes vezető környezetében elhelyezkedő vezetőkeretben indukált feszültség meghatározása== | ||
Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezető síkjában egy téglalap alakú, <math>a \times b</math> méretű vezetőkeret helyezkedik el. A vezetőkeret <math>a</math> méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget! | Egy végtelen hosszú, <math>I</math> szinuszos áramot szállító vezető síkjában egy téglalap alakú, <math>a \times b</math> méretű vezetőkeret helyezkedik el. A vezetőkeret <math>a</math> méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget! | ||
'''Megoldás''' | |||
Ábra: | Ábra: | ||
| 62. sor: | 61. sor: | ||
Az integrálást tehát csak a <math>b</math> oldal szerint végezzük el, mivel <math>a</math> oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől <math>d</math>. | Az integrálást tehát csak a <math>b</math> oldal szerint végezzük el, mivel <math>a</math> oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől <math>d</math>. | ||
==3. Feladat== | ==3. Feladat== | ||