„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

David14 (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
618. sor: 618. sor:
=== 149. Feladat: Koaxiális kábelben áramló teljesítmény ===
=== 149. Feladat: Koaxiális kábelben áramló teljesítmény ===


Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:<br\><math>E(r)=\frac{U_0}{r}*\vec{e_r}</math> (ahol <math>\vec{e_r}</math> a radiális irányú egységvektor),
Koaxiális kábelben egyenáram folyik, a dielektrikumban kialakuló elektromos és mágneses térerősség hengerkoordináta-rendszerben leírva a következő:
<br\><math>H(r)=\frac{I_0}{r}*\vec{e_\varphi}</math> (ahol <math>\vec{e_\varphi}</math> a fi irányú egységvektor).<br\>
 
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara r<sub>1</sub>, a külső vezető belső sugara r<sub>2</sub>, a vezetők ideálisak, a kábel tengelye a z irányú.
<math>E(r)=\frac{U_0}{r} \cdot \vec{e_r}</math> és <math>H(r)=\frac{I_0}{r} \cdot \vec{e_\varphi}</math>  
 
(<math>\vec{e_r}, \vec{e_\varphi}</math> és <math>\vec{e_z}</math> a radiális, fi és z irányú egységvektorok)
 
Milyen irányú és mekkora az áramló hatásos teljesítmény? A belső ér sugara <math>r_1</math>, a külső vezető belső sugara <math>r_2</math>, a vezetők ideálisak, a kábel tengelye a z irányú.


{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg= A Poynting-vektor kifejezése: <math>S=E \times H \Rightarrow S(r)=E(r)*H(r)*\vec{e_z}</math> (ahol <math>\vec{e_z}</math> a z irányú egységvektor). <br\>Innen a teljesítmény: <math>P=\int_S \vec{S} d \vec{A} = \int_{r_1}^{r_2} \int_0^{2\pi} \frac{U_0 I_0}{r^2} \mathrm{d}\varphi \mathrm{d}r=2\pi U_0 I_0(\frac{1}{r_1}-\frac{1}{r_2})=2\pi U_0 I_0 \frac{r_2-r_1}{r_1 r_2}</math>
|szöveg=
A Poynting-vektor kifejezése: <math>S=E \times H \Rightarrow S(r)=E(r) \cdot H(r) \cdot \vec{e_z}</math>
 
''Megjegyzés:'' Mivel egyenáramról van szó, így nincs szükség a 2-vel való osztásra, hiszen egyenáram esetén a csúcsérték megmegegyezik az effektív értékkel.
 
 
Innen a teljesítmény: <math>P=\int_A \vec{S} d \;\vec{s} = \int_{r_1}^{r_2} \int_0^{2\pi} \frac{U_0 I_0}{r^2} \; \mathrm{d}\varphi \mathrm{d}r=2\pi U_0 I_0\left(\frac{1}{r_1}-\frac{1}{r_2}\right)=2\pi U_0 I_0 \frac{r_2-r_1}{r_1 r_2}</math>
}}
}}


[[Kategória:Villanyalap]]
[[Kategória:Villanyalap]]