„Matematika A1 - Vizsga: 2007.06.07” változatai közötti eltérés
148. sor: | 148. sor: | ||
|szöveg= | |szöveg= | ||
'''a, Feladat:''' | |||
Parciális törtekre bontjuk az integrandust: | Parciális törtekre bontjuk az integrandust: | ||
<math> \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx +C}{x^2+1}</math> | <math> \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx +C}{x^2+1}</math> | ||
155. sor: | 159. sor: | ||
<math> \frac{1}{x(x^2+1)} = \frac{Ax^2 + A + Bx^2 + Cx)}{x(x^2+1)}</math> | <math> \frac{1}{x(x^2+1)} = \frac{Ax^2 + A + Bx^2 + Cx)}{x(x^2+1)}</math> | ||
<math> 1 = (A+B)x^2 + Cx + A</math> | <math> 1 = (A+B)x^2 + Cx + A</math> | ||
Két polinom csakis akkor lehet egyenlő, ha megegyeznek a megfelelő együtthatóik: | |||
<math> A=1</math> | <math> A=1</math> | ||
163. sor: | 171. sor: | ||
<math> C=0</math> | <math> C=0</math> | ||
Tehát: | |||
<math> \frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}</math> | <math> \frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}</math> | ||
Így már könnyű integrálni: | Így már könnyű integrálni: | ||
<math> \int \frac{1}{x(x^2+1)}\;dx = \int\frac{1}{x} - \frac{1}{2}\int\frac{2x}{x^2+1} = ln|x| - \frac{1}{2}ln|x^2+1|+C </math> | <math> \int \frac{1}{x(x^2+1)}\;dx = \int\frac{1}{x} - \frac{1}{2}\int\frac{2x}{x^2+1} = ln|x| - \frac{1}{2}ln|x^2+1|+C </math> | ||
'''b, Feladat:''' | |||
<math> \frac{x^{\frac{1}{2}}}{xx^{\frac{1}{2}}+3} = \frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3} </math> | <math> \frac{x^{\frac{1}{2}}}{xx^{\frac{1}{2}}+3} = \frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3} </math> | ||
Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :) | Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :) | ||
<math> \frac{2}{3} \int{\frac{\frac{3}{2}x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3}}\;dx = \frac{2}{3}\;ln{|x^{\frac{3}{2}}+3|+C}</math> | <math> \frac{2}{3} \int{\frac{\frac{3}{2}x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3}}\;dx = \frac{2}{3}\;ln{|x^{\frac{3}{2}}+3|+C}</math> | ||
}} | }} | ||
[[Category:Villanyalap]] | [[Category:Villanyalap]] |
A lap 2014. január 17., 23:59-kori változata
1. Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)2. Oldja meg a egyenletet.
Írjuk ki z-t és z konjugáltat algebrai alakban:
Zárójelek felbontása után:
Kihúzzuk a közös tagokat, osztunk 2i-vel:
Ez akkor lehetséges, ha és , az összes ilyen alakú szám megoldás.
3. Határozza meg az alábbi sorozatok határértékét:
a, Feladat:
A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz:
Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!
Látható, hogy a nevező 1-hez tart, így a határérték:
b, Feladat:
A gyökjel alatt végezzünk algebrai átalakítást:
Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:
Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.
Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.
Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.
Tudjuk, hogy:
Így a rendőrelv miatt:
4. Legyen és .
a, Hol folytonos és hol deriválható ?
b, Hol folytonos ?
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)5. Igaz vagy hamis? Válaszát indokolja!
a, Ha és , akkor
b, Ha akkor
c, Ha f korlátos [a,b]-n, akkor folytonos [a,b]-n
d, Ha f szigorúan monoton nő -en, akkor
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)6. Számítsa ki a következő határozatlan integrálokat:
a, Feladat:
Parciális törtekre bontjuk az integrandust:
Két polinom csakis akkor lehet egyenlő, ha megegyeznek a megfelelő együtthatóik:
Tehát:
Így már könnyű integrálni:
b, Feladat:
Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)