„Matematika A1 - Vizsga: 2007.06.07” változatai közötti eltérés
40. sor: | 40. sor: | ||
===3. Határozza meg az alábbi sorozatok határértékét:=== | ===3. Határozza meg az alábbi sorozatok határértékét:=== | ||
<math>a, \; a_n = (\frac{n^2-1}{n^2+2})^{3n^2}</math> | <math>a, \; a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}</math> | ||
<math>b, \; \sqrt[n]{\frac{2n^2-1}{n^2+2}}</math> | <math>b, \; b_n=\sqrt[n]{\frac{2n^2-1}{n^2+2}}</math> | ||
{{Rejtett | {{Rejtett | ||
48. sor: | 48. sor: | ||
|szöveg= | |szöveg= | ||
<math>(\frac{n^2+2-2-1}{n^2+2})^{3n^2} = (\frac{n^2+2}{n^2+2}+\frac{-3}{n^2+2})^{3n^2} = (1-\frac{3}{n^2+2})^{3n^2} | '''a, Feladat:''' | ||
<math> a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}= | |||
\left(\frac{n^2+2-2-1}{n^2+2}\right)^{3n^2}= | |||
\left(\frac{n^2+2}{n^2+2}+\frac{-3}{n^2+2}\right)^{3n^2}= | |||
\left(1-\frac{3}{n^2+2}\right)^{3n^2}</math> | |||
A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz: | A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz: | ||
<math>(1-\frac{9}{3n^2+6})^{3n^2} </math> | <math>\left(1-\frac{9}{3n^2+6}\right)^{3n^2} </math> | ||
Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás! | Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás! | ||
<math>\frac{(1-\frac{9}{3n^2+6})^{3n^2+6}}{(1-\frac{9}{3n^2+6})^6} </math> | <math>\frac{\left(1-\frac{9}{3n^2+6}\right)^{3n^2+6}}{\left(1-\frac{9}{3n^2+6}\right)^6} </math> | ||
Látható, hogy a nevező 1-hez tart, így a határérték: | Látható, hogy a nevező 1-hez tart, így a határérték: | ||
<math>\underline{\underline{e^{-9} = \frac{1}{e^9}}}</math> | <math>\underline{\underline{e^{-9} = \frac{1}{e^9}}}</math> | ||
'''b, Feladat:''' | |||
<math> \ | A gyökjel alatt végezzünk algebrai átalakítást: | ||
<math> b_n=\sqrt[n]{2-\frac{5}{n^2+2}} </math> | |||
Most adjunk alsó és felső becslést a gyökjel alatti sorozatra: | |||
Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála. | |||
Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat. | |||
-- | <math>2-\frac{5}{3}=\frac{1}{3} < 2-\frac{5}{n^2+2} < 2</math> | ||
Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé. | |||
<math>\sqrt[n]{\frac{1}{3}} <\sqrt[n]{ 2-\frac{5}{n^2+2} }<\sqrt[n]{ 2}</math> | |||
Tudjuk, hogy: | |||
<math>\lim_{n\to\infty} {\sqrt[n]{\frac{1}{3}}}=1</math> | |||
<math>\lim_{n\to\infty} {\sqrt[n]{ 2}} =1</math> | |||
Így a rendőrelv miatt: | |||
<math>\lim_{n\to\infty} {b_n}=1</math> | |||
}} | }} |
A lap 2014. január 17., 23:53-kori változata
1. Határozza meg a (0,2,0), (1,0,-1) és (0,-1,2) pontokat tartalmazó sík egyenletét.
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)2. Oldja meg a Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^2 = \overline{z}^ 2} egyenletet.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle z^2 = \overline{z}^2 }
Írjuk ki z-t és z konjugáltat algebrai alakban:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (a+bi)^2 = (a-bi)^2 }
Zárójelek felbontása után:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a^2+2abi-b^2 = a^2-2abi-b^2 }
Kihúzzuk a közös tagokat, osztunk 2i-vel:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ab = -ab }
Ez akkor lehetséges, ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a = 0 \vee b = 0 } és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a,b \in \mathbb{R}} , az összes ilyen alakú szám megoldás.3. Határozza meg az alábbi sorozatok határértékét:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, \; a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b, \; b_n=\sqrt[n]{\frac{2n^2-1}{n^2+2}}}
a, Feladat:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a_n = \left(\frac{n^2-1}{n^2+2}\right)^{3n^2}= \left(\frac{n^2+2-2-1}{n^2+2}\right)^{3n^2}= \left(\frac{n^2+2}{n^2+2}+\frac{-3}{n^2+2}\right)^{3n^2}= \left(1-\frac{3}{n^2+2}\right)^{3n^2}}
A nevezőt alakítsuk úgy, hogy hasonlítson a kitevőhöz: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \left(1-\frac{9}{3n^2+6}\right)^{3n^2} }
Felírjuk a kitevőt úgy, hogy nevezetes határértéket kapjunk, de ekkor persze még osztani is kell, hogy ne legyen csalás!
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{\left(1-\frac{9}{3n^2+6}\right)^{3n^2+6}}{\left(1-\frac{9}{3n^2+6}\right)^6} }
Látható, hogy a nevező 1-hez tart, így a határérték:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \underline{\underline{e^{-9} = \frac{1}{e^9}}}}
b, Feladat:
A gyökjel alatt végezzünk algebrai átalakítást:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b_n=\sqrt[n]{2-\frac{5}{n^2+2}} }
Most adjunk alsó és felső becslést a gyökjel alatti sorozatra:
Felső becslésnek tökéletes a 2, hiszen sosem érheti el a gyökjel alatti sorozat, és minden eleme kisebb nála.
Alsó becslésnek vegyük a gyökjel alatti sorozat első elemét, hiszen ha n nő, akkor egyre kisebb számokat vonunk ki a kettőből, tehát szigorúan monoton növekszik a gyökjel alatti sorozat.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 2-\frac{5}{3}=\frac{1}{3} < 2-\frac{5}{n^2+2} < 2}
Most alkalmazzuk a rendőrelvvet (alias csendőrelv, közrefogási elv), amit megtehetünk, mivel tudjuk, hogy az n-edik gyök szigorúan monoton növekvő függvény, tehát kisebb szám n-edik gyöke kisebb, mint egy nagyobb számé.
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \sqrt[n]{\frac{1}{3}} <\sqrt[n]{ 2-\frac{5}{n^2+2} }<\sqrt[n]{ 2}}
Tudjuk, hogy:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{n\to\infty} {\sqrt[n]{\frac{1}{3}}}=1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{n\to\infty} {\sqrt[n]{ 2}} =1}
Így a rendőrelv miatt:
4. Legyen Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x)= xarctan\frac{1}{x^2}, x \neq 0} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 0, x=0} .
a, Hol folytonos és hol deriválható Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f(x)} ?
b, Hol folytonos Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle f'(x)} ?
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)5. Igaz vagy hamis? Válaszát indokolja!
a, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a,b \neq 0} és Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle ab = ac} , akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b = c}
b, Ha Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim {a_n} = \lim{b_n} = 0} akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim{ \frac{a_n}{b_n} }= 1}
c, Ha f korlátos [a,b]-n, akkor folytonos [a,b]-n
d, Ha f szigorúan monoton nő Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \mathbb{R}} -en, akkor Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \lim_{x \rightarrow \infty} {f(x) }= \infty}
Ehhez a feladathoz még nincs megoldás!
Ha tudod, írd le ide ;)6. Számítsa ki a következő határozatlan integrálokat:
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle a, \; \int \frac{1}{x(x^2+1)}dx }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle b, \; \int \frac{\sqrt{x}}{x\sqrt{x}+3}dx}
(a) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int \frac{1}{x(x^2+1)}dx }
Parciális törtekre bontjuk az integrandust: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{A}{x} + \frac{Bx +C}{x^2+1}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{A(x^2+1)+ x(Bx +C)}{x(x^2+1)}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{Ax^2 + A + Bx^2 + Cx)}{x(x^2+1)}}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle 1 = (A+B)x^2 + Cx + A}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle A=1}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle (A+B)=0 \Rightarrow B = -1 }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle C=0}
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{1}{x(x^2+1)} = \frac{1}{x} - \frac{x}{x^2+1}} Így már könnyű integrálni: Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int \frac{1}{x(x^2+1)}\;dx = \int\frac{1}{x} - \frac{1}{2}\int\frac{2x}{x^2+1} = ln|x| - \frac{1}{2}ln|x^2+1|+C }
-- OverLord - 2008.01.14.
(b) Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \int{ \frac{\sqrt{x}}{x\sqrt{x}+3}}\;dx }
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{x^{\frac{1}{2}}}{xx^{\frac{1}{2}}+3} = \frac{x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3} } Mi is a nevező deriváltja? Jéé, az majdnem a számláló! Ennek örülünk :)
Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \frac{2}{3} \int{\frac{\frac{3}{2}x^{\frac{1}{2}}}{x^{\frac{3}{2}}+3}}\;dx = \frac{2}{3}\;ln{|x^{\frac{3}{2}}+3|+C}}
-- OverLord - 2008.01.14.