„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

David14 (vitalap | szerkesztései)
David14 (vitalap | szerkesztései)
110. sor: 110. sor:


=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
=== 109. Feladat: Hengeres vezető belsejében az elektromos térerősség ===
Egy 2 mm sugarú, hosszú hengeres vezető 35 MS/m fajlagos vezetőképességű anyagból van, a behatolási mélység 80 µm. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10*cos(\omega t)*\vec{n}_0</math>. Itt n egy vektor, ami a vezető hosszanti tengelyével párhuzamos.
Egy 2 mm sugarú, hosszú hengeres vezető 35 MS/m fajlagos vezetőképességű anyagból van, a behatolási mélység 80 µm. A térerősség időfüggvénye a vezető felszínén <math>\vec{E}(t)=10*cos(\omega t)*\vec{n}_0</math>. Itt n egy egységvektor, ami a vezető hosszanti tengelyével párhuzamos.
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
Adja meg az áramsűrűség időfüggvényét a felülettől 2 behatolási mélységnyi távolságra!
{{Rejtett
{{Rejtett
|mutatott='''Megoldás'''
|mutatott='''Megoldás'''
|szöveg=
|szöveg=
<math>r << \delta </math>
Mivel: <math>\delta << r </math>


A mélység (z) függvényében a térerősség komplex amplitúdójának változása:
Így a mélység (z) függvényében a térerősség komplex amplitúdójának változása:
<math>E(z)=E_0*e^{-\gamma z}=E_0*e^{-z/ \delta}*e^{-jz/ \delta}</math>
<math>E(z)=E_0*e^{-\gamma z}=E_0*e^{- \left( 1/ \delta + j/ \delta  \right) z}=E_0*e^{-z/ \delta}*e^{-jz/ \delta}</math>


A differenciális Ohm-törvény: <math>\vec{J}=\sigma * \vec{E }</math>
A differenciális Ohm-törvény: <math>\vec{J}=\sigma * \vec{E }</math>