„Matematika A3 villamosmérnököknek - Vizsga, 2006.06.02.” változatai közötti eltérés
a Nem tartom törlendőnek, át kell futni és megmenteni |
Nincs szerkesztési összefoglaló |
||
1. sor: | 1. sor: | ||
{{Vissza|Matematika A3 villamosmérnököknek}} | |||
{{TODO}} | {{TODO}} | ||
7. sor: | 9. sor: | ||
Oldja meg a komplex számok körében a <math>\sinh z = i </math> egyenletet. ''(15p)'' | Oldja meg a komplex számok körében a <math>\sinh z = i </math> egyenletet. ''(15p)'' | ||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg=<math>\sinh z = i</math> <br> | |||
<math>\sinh z = \sinh{x} \cos{y} + \j \cosh{c} \sin{y} = \j</math> <br> | |||
Ebből következik: | |||
* <math>\sinh{x} \cos{y} = 0</math>, ami <math>x = 0</math> vagy <math>y = \frac{\pi}{2} + k2\pi</math> számpárokra teljesül | |||
* <math>\cosh{x} \sin{y} = 1</math>, ami szintén a fenti számpárokra teljesül | |||
tehát <math>z= 0 + \j (\frac{\pi}{2} + k2\pi), k\in\mathbb{Z}</math>. | |||
}} | |||
===2. feladat=== | ===2. feladat=== | ||
Mutassa meg, hogy az <math> u(x,y) = e^{-y}\sin x </math> függvény | Mutassa meg, hogy az <math> u(x,y) = e^{-y}\sin x </math> függvény harmonikus , és keresse meg azt a <math>v(x,y)</math> harmonikus társat, amelynél az <math> f(x+iy) = u(x,y)+iv(x,y)</math> függvényre <math>f(0)=0</math> teljesül. ''(15p)'' | ||
{{Rejtett|mutatott='''Megoldás'''|szöveg=}} | |||
===3. feladat=== | ===3. feladat=== | ||
19. sor: | 29. sor: | ||
<math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2 + y^2 + z^2 \leqslant 9} \right\}</math> térrészt és az <math>f=(x,y,z) = xy^2z</math> függvényt. Számolja ki a <math> | <math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2 + y^2 + z^2 \leqslant 9} \right\}</math> térrészt és az <math>f=(x,y,z) = xy^2z</math> függvényt. Számolja ki a <math> | ||
\int\limits_{V} f </math> térfogati integrált ''(20p)'' | \int\limits_{V} f </math> térfogati integrált ''(20p)'' | ||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg=A | |||
A | |||
<math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2 + y^2 + z^2 \leqslant 9} \right\}</math> térrész egy 3 sugarú negyed körcikk és belseje. Gömbi koordinátákkal felírva: | <math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2 + y^2 + z^2 \leqslant 9} \right\}</math> térrész egy 3 sugarú negyed körcikk és belseje. Gömbi koordinátákkal felírva: | ||
<math> | <math> | ||
89. sor: | 53. sor: | ||
\end{gathered} | \end{gathered} | ||
</math> | </math> | ||
}} | |||
===4. feladat=== | |||
Oldja meg az | |||
= | <math> | ||
y''(x) + 3y'(x) + 2y(x) = 1 + e^{ - x} | |||
. | </math> | ||
differenciálegyenletet. ''(15p)'' | |||
{{Rejtett | |||
= | |mutatott='''Megoldás''' | ||
Először a tekintsük a homogén egyenletet: | |szöveg=Először a tekintsük a homogén egyenletet: | ||
<math>y'' + 3y' + 2y = 0</math> | <math>y'' + 3y' + 2y = 0</math> | ||
145. sor: | 112. sor: | ||
<math>y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5</math> | <math>y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5</math> | ||
}} | |||
===5. feladat=== | |||
A komplex sík mely pontjaiban differenciálható az <math>f(z) = \bar z z^2</math> függvény ? ''(15p)'' | |||
== | {{Rejtett | ||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
}} | |||
. | ===6. feladat=== | ||
Oldja meg az | |||
<math> | <math> | ||
\left\{ \begin{gathered} | |||
\dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\ | |||
\dot x_2 (t) = - 8x_1 (t) + 3x_2 (t) \hfill \\ | |||
\end{gathered} \right. | |||
</math> | |||
differenciálegyenlet-rendszert az <math>x_1 (0) = 1,x_2 (0) = 0</math> kezdeti feltételek mellett. ''(20p)'' | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg=<math> | |||
\left\{ \begin{gathered} | \left\{ \begin{gathered} | ||
\dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\ | \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\ | ||
166. sor: | 145. sor: | ||
így a második egyenlet kifejezhető <math>x_1</math>-nek és deriváltjainak segítségével. | így a második egyenlet kifejezhető <math>x_1</math>-nek és deriváltjainak segítségével. | ||
}} | |||
[[Kategória:Villanyalap]] | |||