„Matematika A3 villamosmérnököknek - Vizsga, 2006.06.02.” változatai közötti eltérés

Hryghr (vitalap | szerkesztései)
a Nem tartom törlendőnek, át kell futni és megmenteni
Hryghr (vitalap | szerkesztései)
Nincs szerkesztési összefoglaló
1. sor: 1. sor:
{{Vissza|Matematika A3 villamosmérnököknek}}
{{TODO}}
{{TODO}}


7. sor: 9. sor:


Oldja meg a komplex számok körében a <math>\sinh z = i </math> egyenletet. ''(15p)''
Oldja meg a komplex számok körében a <math>\sinh z = i </math> egyenletet. ''(15p)''
[[#ToMegoldas1|megoldás]]
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=<math>\sinh z = i</math> <br>
<math>\sinh z = \sinh{x} \cos{y} + \j \cosh{c} \sin{y} = \j</math> <br>
Ebből következik:
* <math>\sinh{x} \cos{y} = 0</math>, ami <math>x = 0</math> vagy <math>y = \frac{\pi}{2} + k2\pi</math> számpárokra teljesül
* <math>\cosh{x} \sin{y} = 1</math>, ami szintén a fenti számpárokra teljesül
tehát <math>z= 0 + \j (\frac{\pi}{2} + k2\pi), k\in\mathbb{Z}</math>.
}}


===2. feladat===
===2. feladat===


Mutassa meg, hogy az <math> u(x,y) = e^{-y}\sin x </math> függvény harmónikus , és keresse meg azt a <math>v(x,y)</math> harmonikus társat, amelynél az <math> f(x+iy) = u(x,y)+iv(x,y)</math> függvényre  <math>f(0)=0</math> teljesül. ''(15p)''
Mutassa meg, hogy az <math> u(x,y) = e^{-y}\sin x </math> függvény harmonikus , és keresse meg azt a <math>v(x,y)</math> harmonikus társat, amelynél az <math> f(x+iy) = u(x,y)+iv(x,y)</math> függvényre  <math>f(0)=0</math> teljesül. ''(15p)''
[[#ToMegoldas2|megoldás]]
{{Rejtett|mutatott='''Megoldás'''|szöveg=}}


===3. feladat===
===3. feladat===
19. sor: 29. sor:
<math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2  + y^2  + z^2  \leqslant 9} \right\}</math> térrészt és az <math>f=(x,y,z) = xy^2z</math> függvényt.  Számolja ki a <math>
<math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2  + y^2  + z^2  \leqslant 9} \right\}</math> térrészt és az <math>f=(x,y,z) = xy^2z</math> függvényt.  Számolja ki a <math>
\int\limits_{V} f </math> térfogati integrált ''(20p)''
\int\limits_{V} f </math> térfogati integrált ''(20p)''
[[#ToMegoldas3|megoldás]]
{{Rejtett
|mutatott='''Megoldás'''
===4. feladat===
|szöveg=A  
 
Oldja meg az
<math>
y''(x) + 3y'(x) + 2y(x) = 1 + e^{ - x}
</math>
differenciálegyenletet. ''(15p)''
[[#ToMegoldas4|megoldás]]
 
===5. feladat===
 
A komplex sík mely pontjaiban differenciálható az <math>f(z) = \bar z z^2</math> függvény ? ''(15p)''
[[#ToMegoldas5|megoldás]]
 
===6. feladat===
 
Oldja meg az
<math>
\left\{ \begin{gathered}
  \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\
  \dot x_2 (t) =  - 8x_1 (t) + 3x_2 (t) \hfill \\
\end{gathered}  \right.
</math>
differenciálegyenlet-rendszert az <math>x_1 (0) = 1,x_2 (0) = 0</math> kezdeti feltételek mellett.  ''(20p)''
 
[[#ToMegoldas6|megoldás]]
 
#ToMegoldas1
==Megoldások==
 
===1. feladat megoldása===
<math>\sinh z = i</math> <br>
<math>\sinh z = \sinh{x} \cos{y} + \j \cosh{c} \sin{y} = \j</math> <br>
Ebből következik:
* <math>\sinh{x} \cos{y} = 0</math>, ami <math>x = 0</math> vagy <math>y = \frac{\pi}{2} + k2\pi</math> számpárokra teljesül
* <math>\cosh{x} \sin{y} = 1</math>, ami szintén a fenti számpárokra teljesül
tehát <math>z= 0 + \j (\frac{\pi}{2} + k2\pi), k\in\mathbb{Z}</math>.
 
#ToMegoldas2
===2. feladat megoldása===
 
...
 
#ToMegoldas3
===3. feladat megoldása===
 
A  
<math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2  + y^2  + z^2  \leqslant 9} \right\}</math> térrész egy 3 sugarú negyed körcikk és belseje. Gömbi koordinátákkal felírva:
<math>V = \left\{ {(x,y,z) \in \mathbb{R}^3 |y \geqslant 0,z \geqslant 0,x^2  + y^2  + z^2  \leqslant 9} \right\}</math> térrész egy 3 sugarú negyed körcikk és belseje. Gömbi koordinátákkal felírva:
<math>
<math>
89. sor: 53. sor:
\end{gathered}  
\end{gathered}  
</math>
</math>
}}
===4. feladat===


#ToMegoldas3
Oldja meg az
===3. feladat megoldása===
<math>
 
y''(x) + 3y'(x) + 2y(x) = 1 + e^{ - x}
...
</math>
 
differenciálegyenletet. ''(15p)''
#ToMegoldas4
{{Rejtett
===4. feladat megoldása===
|mutatott='''Megoldás'''
Először a tekintsük a homogén egyenletet:
|szöveg=Először a tekintsük a homogén egyenletet:


<math>y'' + 3y' + 2y = 0</math>
<math>y'' + 3y' + 2y = 0</math>
145. sor: 112. sor:


<math>y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5</math>
<math>y(x) = xe^{-x}+c_{1}e^{-x}+c_{2}e^{-2x}+0.5</math>
}}


Bugok, észrevételek: ruster@sch.bme.hu
===5. feladat===


#ToMegoldas5
A komplex sík mely pontjaiban differenciálható az <math>f(z) = \bar z z^2</math> függvény ? ''(15p)''
===5. feladat megoldása===
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
}}


...
===6. feladat===


#ToMegoldas6
Oldja meg az
===6. feladat megoldása===
<math>
<math>
\left\{ \begin{gathered}
  \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\
  \dot x_2 (t) =  - 8x_1 (t) + 3x_2 (t) \hfill \\
\end{gathered}  \right.
</math>
differenciálegyenlet-rendszert az <math>x_1 (0) = 1,x_2 (0) = 0</math> kezdeti feltételek mellett.  ''(20p)''
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=<math>
\left\{ \begin{gathered}
\left\{ \begin{gathered}
   \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\
   \dot x_1 (t) = x_1 (t) - x_2 (t) \hfill \\
166. sor: 145. sor:


így a második egyenlet kifejezhető <math>x_1</math>-nek és deriváltjainak segítségével.
így a második egyenlet kifejezhető <math>x_1</math>-nek és deriváltjainak segítségével.
}}


 
[[Kategória:Villanyalap]]
 
 
-- [[KissGergely|Ger******]] - 2006.06.02.