„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés

A VIK Wikiből
Hryghr (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
Arklur (vitalap | szerkesztései)
22. sor: 22. sor:
*Minden belső csúcsnak 2, vagy 3 fia lehet, se több, se kevesebb. ''(Kivéve, ha csak 1 elemet tárolunk a fában, mert akkor a gyökérnek csak 1 fia van.)''
*Minden belső csúcsnak 2, vagy 3 fia lehet, se több, se kevesebb. ''(Kivéve, ha csak 1 elemet tárolunk a fában, mert akkor a gyökérnek csak 1 fia van.)''
*A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak).
*A fa levelei a gyökértől egyenlő távolságra vannak (vagyis a levelek 1 szinten vannak).
*A belső csúcsokban mutatókat (M) és 1, vagy 2 elemet (S) tárolunk.
*A belső csúcsokban mutatókat (M) és 1, vagy 2 kulcsot (S) tárolunk.
**Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy elememet tárol. [[File:2_3_2.png|300px]]
**Ha a csúcsnak 2 fia van, akkor 2 mutatót, és egy kulcsot tárol. [[File:2_3_2.png|300px]]
***A bal részfában az elemek kisebbek, mint S1.
***A bal részfában az elemek kisebbek, mint S1.
***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1).
***A jobb részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1).
**Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 elemet tárol. [[File:2_3_3.png|400px]]
**Ha a csúcsnak 3 fia van, akkor 3 mutatót, és 2 kulcsot tárol. [[File:2_3_3.png|400px]]
***A bal részfában az elemek kisebbek, mint S1.
***A bal részfában az elemek kisebbek, mint S1.
***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2.
***A középső részfában az elemek nagyobb-egyenlőek, mint S1 (vagyis az 1. elem S1), de kisebbek, mint S2.

A lap 2013. június 15., 13:31-kori változata


2013.06.06. vizsga megoldásai

1. Feladat

TODO

Megoldás

2. Feladat (Van megoldás)

Adja meg a 2-3 fa definícióját! Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!

Megoldás

3. Feladat

TODO

Megoldás

4. Feladat

TODO

Megoldás

5. Feladat (Van megoldás)

Egy algoritmus lépésszámáról tudjuk, hogy T(n)=T(n4)+O(n2) és tudjuk azt is, hogy T(1)=T(2)=T(3)=1. Bizonyítsa be, hogy T(n)=O(n2).

Megoldás

6. Feladat

Egy ország n kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében O(n2) időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak).

Megoldás

7. Feladat

TODO

Megoldás

8. Feladat

TODO

Megoldás