„Algoritmuselmélet - ZH, 2013.04.03.” változatai közötti eltérés
| 10. sor: | 10. sor: | ||
===2. Feladat=== | ===2. Feladat=== | ||
Egy <math> A[i,j] </math> <math>n</math> x <math>n</math>-es táblázat minden mezőjében egy egész szám van írva (nem feltétlenül csak pozitívak). Adjon <math> O(n^2) </math> lépésszámú algoritmust, ami eldönti, hogy melyik az a téglalap alakú része a táblázatnak, melynek bal felső sarka egybe esik a nagy táblázat bal felső sarkával és benne az elemek összege az egyik legnagyobb. | |||
(Vagyis olyan <math>k, l</math>-t keresünk, amire <math> \sum_{i \leq k, j \leq l}A[i,j] </math> maximális.) | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
<math> T </math> | |||
}} | }} | ||