„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés

A VIK Wikiből
Arklur (vitalap | szerkesztései)
Arklur (vitalap | szerkesztései)
64. sor: 64. sor:
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=
''[...] Más hibát nem veszek észre benne, én is kb. így oldanám meg. (by Katona Gyula Y.)''
''(2 hiba volt benne: egyik, hogy r = 1/16 helyett 1/4 volt, ill. hogy limeszt használtam felső becslés helyett).''


<math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor  \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{16} \right) + O(n^2)=...=1 + O(n^2)\cdot\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{16}  \right )^i\right)</math><br>
<math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor  \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{16} \right) + O(n^2)=...=1 + O(n^2)\cdot\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{16}  \right )^i\right)</math><br>

A lap 2013. június 11., 16:29-kori változata

2013.06.06. vizsga megoldásai

1. Feladat

TODO

Megoldás

2. Feladat (Van megoldás)

Adja meg a 2-3 fa definícióját! Adjon felső becslést a fa szintszámára n tárolt elem esetén, állítását bizonyítsa is!

Megoldás

3. Feladat

TODO

Megoldás

4. Feladat

TODO

Megoldás

5. Feladat (Van megoldás)

Egy algoritmus lépésszámáról tudjuk, hogy T(n)=T(n4)+O(n2) és tudjuk azt is, hogy T(1)=T(2)=T(3)=1. Bizonyítsa be, hogy T(n)=O(n2).

Megoldás

6. Feladat

Egy ország n kis szigetből áll. Szeretnénk néhány hajójáratot indítani a szigetek között úgy, hogy bárhonnan bárhova el lehessen jutni (esetleg átszállással). Ehhez ismerjük bármely két szigetre, hogy mennyibe kerül egy évben a hajójárat fenntartása közöttük, illetve azt, hogy mekkora az itt várható éves bevétel. Adjon algoritmust, ami ezen adatok ismeretében O(n2) időben meghatározza, hogy hol indítsuk el a hajójáratokat, ha a lehető legnagyobb várható éves hasznot (vagy a lehető legkisebb veszteséget) szeretnénk elérni. (Egy szigeten egy hajóállomás van csak).

Megoldás

7. Feladat

TODO

Megoldás

8. Feladat

TODO

Megoldás