„Algoritmuselmélet - PZH, 2013.04.24.” változatai közötti eltérés
13. sor: | 13. sor: | ||
}} | }} | ||
===2. Feladat=== | ===2. Feladat (Van megoldás)=== | ||
Adott egy teljes bináris fa, a csúcsaiba egész számok vannak írva, összesen ''n'' darab (a fa nem feltétlenül bináris keresőfa). Adjon algoritmust, ami <math>O(n)</math> lépésben megkeres egy olyan csúcsot a fában, aminek a részfája kupac, és aminek a magassága a legető legnagyobb az összes ilyen csúcs közül. | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
{{Rejtett | |||
|mutatott=<big>'''Megjegyzések a feladathoz'''</big> | |||
|szöveg= | |||
*Bár nem tartozik a feladathoz, talán érdemes megjegyezzem, hogy bináris kereső fa nem is lehetne, hiszen akkor ott kapásból csak a legalsó szinten lévő elemek lehetnek kupacok (egy 1 elemet tartalmazó kupac), hiszen bináris keresőfánál balra kisebbek, jobbra nagyobbak vannak, míg kupacnál balra és jobbra is nagyobbak vannak. | |||
*Továbbá a teljes bináris fára azért van szükség, mert így "jóval egyszerűbb" a feladat, és nem kell szívózni annak vizsgálatával, hogy az adott részfa teljes bináris fa-e (ugyebár ez a kupac egyik fontos tulajdonsága). | |||
}} | |||
Minden csúcsban 3 adatot fogunk számon tartani: Érték (ez persze adott már), részfa magassága (jelüljük M-mel), és egy bool érték (IGAZ/HAMIS, jelöljük B-vel), hogy igaz-e a részfájára, hogy az kupac. | |||
*Első lépésben a legalsó szinteken lévő csúcsok esetén <math>M:=1, B:=IGAZ</math>. | |||
*Legyen egy változónk, amiben tároljuk, hogy melyik csúcsra igaz, hogy az részfája a "legnagyobb" kupac (kezdeti értéke legyen mondjuk az egyik legalsó szinten lévő csúcs). | |||
*Minden további szinten az a feladatunk, hogy megnézzük az adott csúcs (x) bal, és jobb fiát <math>(JOBB(x), BAL(x))</math>. | |||
**Megnézzük, hogy nagyobbak-e, mint x, majd megnézzük, hogy kupac tulajdonsággal bírnak-e: | |||
***Ha <math>BAL(x),JOBB(x) > x;BAL(x).B=JOBB(x).B=IGAZ\Rightarrow\Rightarrow x.M := BAL(x).M+1, x.B := IGAZ</math> majd a változónkba belerakjuk a csúcsot. ''Vagyis ha mindkettő nagyobb, és mindkettő kupac tulajdonsággal bír, akkor a csúcs részfa magassága 1-gyel nagyobb lesz, mint az egyik (bal, vagy jobb) fiai magassága, és kupac tulajdonságú lesz.'' | |||
***Ha <math>BAL(x) < x</math> VAGY <math>JOBB(x) < x</math> VAGY <math>BAL(x).B=HAMIS</math> VAGY <math>JOBB(x).B=HAMIS\Rightarrow\Rightarrow x.M := BAL(x).M+1, x.B := HAMIS</math>. ''Vagyis ha bármelyik feltétel nem teljesül (valamelyik fia kisebb, avagy valamelyik gyerekére nem igaz, hogy kupac tulajdonságú), akkor maga a csúcs sem lehet már kupac tulajdonságú (itt a magasságot nem is kéne beállítani, de...hát miért is ne).'' | |||
Mivel minden csúcsot csak egyszer látogatunk meg, így <math>O(n)</math> lépésben megyünk végig a gráfon. | |||
}} | }} | ||
A lap 2013. június 11., 08:38-kori változata
2013.04.24. PZH megoldásai
1. Feladat (Van megoldás)
Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
ahol , vagyis
2. Feladat (Van megoldás)
Adott egy teljes bináris fa, a csúcsaiba egész számok vannak írva, összesen n darab (a fa nem feltétlenül bináris keresőfa). Adjon algoritmust, ami lépésben megkeres egy olyan csúcsot a fában, aminek a részfája kupac, és aminek a magassága a legető legnagyobb az összes ilyen csúcs közül.
- Bár nem tartozik a feladathoz, talán érdemes megjegyezzem, hogy bináris kereső fa nem is lehetne, hiszen akkor ott kapásból csak a legalsó szinten lévő elemek lehetnek kupacok (egy 1 elemet tartalmazó kupac), hiszen bináris keresőfánál balra kisebbek, jobbra nagyobbak vannak, míg kupacnál balra és jobbra is nagyobbak vannak.
- Továbbá a teljes bináris fára azért van szükség, mert így "jóval egyszerűbb" a feladat, és nem kell szívózni annak vizsgálatával, hogy az adott részfa teljes bináris fa-e (ugyebár ez a kupac egyik fontos tulajdonsága).
Minden csúcsban 3 adatot fogunk számon tartani: Érték (ez persze adott már), részfa magassága (jelüljük M-mel), és egy bool érték (IGAZ/HAMIS, jelöljük B-vel), hogy igaz-e a részfájára, hogy az kupac.
- Első lépésben a legalsó szinteken lévő csúcsok esetén .
- Legyen egy változónk, amiben tároljuk, hogy melyik csúcsra igaz, hogy az részfája a "legnagyobb" kupac (kezdeti értéke legyen mondjuk az egyik legalsó szinten lévő csúcs).
- Minden további szinten az a feladatunk, hogy megnézzük az adott csúcs (x) bal, és jobb fiát .
- Megnézzük, hogy nagyobbak-e, mint x, majd megnézzük, hogy kupac tulajdonsággal bírnak-e:
- Ha majd a változónkba belerakjuk a csúcsot. Vagyis ha mindkettő nagyobb, és mindkettő kupac tulajdonsággal bír, akkor a csúcs részfa magassága 1-gyel nagyobb lesz, mint az egyik (bal, vagy jobb) fiai magassága, és kupac tulajdonságú lesz.
- Ha VAGY VAGY VAGY . Vagyis ha bármelyik feltétel nem teljesül (valamelyik fia kisebb, avagy valamelyik gyerekére nem igaz, hogy kupac tulajdonságú), akkor maga a csúcs sem lehet már kupac tulajdonságú (itt a magasságot nem is kéne beállítani, de...hát miért is ne).
- Megnézzük, hogy nagyobbak-e, mint x, majd megnézzük, hogy kupac tulajdonsággal bírnak-e:
3. Feladat (Van megoldás)
Kukori és Kotkoda egy-egy bináris fára gondolnak (nem feltétlenül bináris keresőfákra). Következik-e, hogy a két fa azonos, ha
(a) inorder bejárással kilolvasva a két fát ugyanazt a számsorozatot kapják?
(b) preorder bejárással kiolvasva a két fát ugyanazt a számsorozatot kapják?
Mindkét esetben 1-1 ellenpéldát kell szolgáltatni:
- a)
Mindkét gráfot A-B-C-D-E sorrendben olvassuk ki, de mégsem egyeznek meg, tehát nem következik.
- b)
4. Feladat
TODO
5. Feladat
TODO
6. Feladat
TODO
7. Feladat
TODO
8. Feladat
TODO