„Algoritmuselmélet - PZH, 2013.04.24.” változatai közötti eltérés
A VIK Wikiből
Új oldal, tartalma: „==2013.04.24. PZH megoldásai== ===1. Feladat=== TODO {{Rejtett |mutatott=<big>'''Megoldás'''</big> |szöveg= TODO }} ===2. Feladat=== TODO {{Rejtett |mutatott=<big>…” |
|||
1. sor: | 1. sor: | ||
==2013.04.24. PZH megoldásai== | ==2013.04.24. PZH megoldásai== | ||
===1. Feladat=== | ===1. Feladat (Van megoldás)=== | ||
Egy algoritmus lépésszámáról tudjuk, hogy <math> T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + O(n^2)</math> és tudjuk azt is, hogy <math> T(1)=T(2)=T(3)=1</math>. Bizonyítsa be, hogy <math> T(n)=O(n^2)</math>. | |||
{{Rejtett | {{Rejtett | ||
|mutatott=<big>'''Megoldás'''</big> | |mutatott=<big>'''Megoldás'''</big> | ||
|szöveg= | |szöveg= | ||
<math> T(n) = T\left(\left \lfloor \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{4} \right) + O(n^2)=...=1 + O(n^2)*\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{4} \right )^i\right)</math><br> | |||
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:<br> | |||
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = 0.25</math>, vagyis <math>\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25}</math><br> | |||
<math> \lim_{n \to \infty}\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25} = \frac{1}{0.75}</math><br> | |||
Tehát <math> T(n)=...=1+\frac{1}{0.75}O(n^2)=O(n^2)</math> | |||
}} | }} | ||
A lap 2013. június 10., 21:54-kori változata
2013.04.24. PZH megoldásai
1. Feladat (Van megoldás)
Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .
Megoldás
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
ahol , vagyis
2. Feladat
TODO
Megoldás
TODO
3. Feladat
TODO
Megoldás
TODO
4. Feladat
TODO
Megoldás
TODO
5. Feladat
TODO
Megoldás
TODO
6. Feladat
TODO
Megoldás
TODO
7. Feladat
TODO
Megoldás
TODO
8. Feladat
TODO
Megoldás
TODO