„Algoritmuselmélet - PZH, 2013.04.24.” változatai közötti eltérés

A VIK Wikiből
Arklur (vitalap | szerkesztései)
Új oldal, tartalma: „==2013.04.24. PZH megoldásai== ===1. Feladat=== TODO {{Rejtett |mutatott=<big>'''Megoldás'''</big> |szöveg= TODO }} ===2. Feladat=== TODO {{Rejtett |mutatott=<big>…”
 
Arklur (vitalap | szerkesztései)
1. sor: 1. sor:
==2013.04.24. PZH megoldásai==
==2013.04.24. PZH megoldásai==
===1. Feladat===
===1. Feladat (Van megoldás)===
TODO
Egy algoritmus lépésszámáról tudjuk, hogy <math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + O(n^2)</math> és tudjuk azt is, hogy <math> T(1)=T(2)=T(3)=1</math>. Bizonyítsa be, hogy <math> T(n)=O(n^2)</math>.
{{Rejtett
{{Rejtett
|mutatott=<big>'''Megoldás'''</big>
|mutatott=<big>'''Megoldás'''</big>
|szöveg=
|szöveg=


TODO
<math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor  \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{4} \right) + O(n^2)=...=1 + O(n^2)*\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{4}  \right )^i\right)</math><br>
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:<br>
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = 0.25</math>, vagyis <math>\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25}</math><br>
<math> \lim_{n \to \infty}\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25} = \frac{1}{0.75}</math><br>
Tehát <math> T(n)=...=1+\frac{1}{0.75}O(n^2)=O(n^2)</math>
}}
}}



A lap 2013. június 10., 21:54-kori változata

2013.04.24. PZH megoldásai

1. Feladat (Van megoldás)

Egy algoritmus lépésszámáról tudjuk, hogy és tudjuk azt is, hogy . Bizonyítsa be, hogy .

Megoldás


Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:
ahol , vagyis

Tehát

2. Feladat

TODO

Megoldás
TODO

3. Feladat

TODO

Megoldás
TODO

4. Feladat

TODO

Megoldás
TODO

5. Feladat

TODO

Megoldás
TODO

6. Feladat

TODO

Megoldás
TODO

7. Feladat

TODO

Megoldás
TODO

8. Feladat

TODO

Megoldás
TODO