„Algoritmuselmélet - Vizsga, 2013.05.30.” változatai közötti eltérés

Arklur (vitalap | szerkesztései)
Arklur (vitalap | szerkesztései)
42. sor: 42. sor:
|szöveg=
|szöveg=


<math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + O(n^2)=T(n) = T\left(\left \lfloor  \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{4} \right) + O(n^2)=...=1 + O(n^2)*\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{4}  \right )^i\right)</math><br>
<math> T(n) = T\left(\left \lfloor  \frac{n}{4} \right \rfloor\right) + O(n^2) = T\left(\left \lfloor  \frac{n}{16} \right \rfloor\right) + O\left(\frac{n^2}{4} \right) + O(n^2)=...=1 + O(n^2)*\left(\sum_{i=0}^{\left \lfloor log_4n \right \rfloor} \left (\frac{1}{4}  \right )^i\right)</math><br>
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:<br>
Azt kell észrevennünk, hogy ez tulajdonképpen egy mértani sor, amire van képletünk:<br>
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = 0.25</math>, vagyis <math>\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25}</math><br>
<math>\sum_{i=0}^{k} r^i = \frac{1-r^{k+1}} {1-r} </math> ahol <math> k = \left \lfloor log_4n \right \rfloor, r = 0.25</math>, vagyis <math>\frac{1-0.25^{\left \lfloor log_4n \right \rfloor+1}} {1-0.25}</math><br>