„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés

A VIK Wikiből
Arklur (vitalap | szerkesztései)
Visszavontam Arklur (vita | szerkesztései) szerkesztését (oldid: 167483)
Arklur (vitalap | szerkesztései)
74. sor: 74. sor:


===5. Feladat===
===5. Feladat===
A hátizsák probléma órán tanult algoritmusát futtattuk egy konkrét inputon, melyben 3 tárgy szerepel. Mi lehetett ez a konkrét input, ha az alábbi táblázat keletkezett? ''Vizsgán megjegyzést fűztek hozzá: rengetegen odahívták a felügyelőket, hogy márpedig itt el vannak írva a számok, mert semmi nem jön ki. Emiatt hangosan elmondták a felügyelők, hogy jók a számok. Személyes hozzáfűzésem: kell mondani 3 számot, melyek közül 0-át 1-et 2-őt vagy 3-at kiválasztva és ezeket összeadva előállnak ezek a számok: 0, 5, 10, 13, 15, 18. Ezek mondjuk lehetnének az 5, 8 és 10. Viszont ezekkel ellentmondásba keveredhetünk. :-((( ''<br>
A hátizsák probléma órán tanult algoritmusát futtattuk egy konkrét inputon, melyben 3 tárgy szerepel. Mi lehetett ez a konkrét input, ha az alábbi táblázat keletkezett?


{| class="wikitable" border="5"
{| class="wikitable" border="5"
125. sor: 125. sor:
|szöveg=
|szöveg=


todo
Az egyszerűség kedvéért a súly legyen kg, az érték pedig €.


<br><br>
#Az első sor alapján az 1-es csomag értéke €10, súlya 4kg.
#A második sor alapján a 2-es csomag értéke €5, súlya 2kg.
#A 3. sornál kicsit rafkósnak kell lenni. Leírhatnám egyből a megoldást, de talán több értelme van, ha a logikai zsákutcákat is leírom.
##Először gondolhatnánk arra, hogy a [4,3]-as cella 10+3 formában áll elő, így a 3-as csomag értéke €3. Viszont így a súlyának 0kg-nak kéne lennie, ami nyílván fatal error.
##Második gondolatunk az lehetne, hogy akkor 5+8 formában áll elő, így a 3-as csomag értéke €8. Súlya ekkor 2kg kellene legyen, viszont akkor a [2,3]-as cellába 8-nak, és nem 5-nek kéne szerepelnie, tehát ez se jó megoldás.
##Harmadik ötletnek nagyon más nem jöhet szóba, hogy akkor a 3-as csomag értéke €13, súlya pedig 4kg. És ha leellenőrizzük, látszik, hogy ez lesz a jó megoldás.
 
Tehát végeredményben a megoldás:
*1-es csomag (€10, 4kg)
*2-es csomag (€5, 2kg)
*3-as csomag (€13, 4kg)


}}
}}

A lap 2013. június 7., 18:37-kori változata

2013.06.06. vizsga megoldásai

1. Feladat

Ebben a feladatban a mélységi bejárással kapcsolatos kérdésekre kell válaszolni.

  • (a) Adja meg a keresztél definícióját!
  • (b) A mélységi bejárás során hogyan lehet a mélységi és a befejezési számok alapján felismerni a keresztéleket? Vizsgán megjegyzést fűztek hozzá: irányított gráfokra kell gondolni.
  • (c) Bizonyítsa be, hogy irányítatlan gráf mélységi bejárásánál nincsenek keresztélek!
Megoldás

2. Feladat

Milyen műveletek vannak a nyitott címzésű hash-elésnél? Hogyan kell megvalósítani a keresést, ha a nyitott címzésű hashelésnél kvadratikus maradék próbát használunk?

Megoldás

3. Feladat

Adja meg az UNIÓ-HOLVAN adatszerkezet definícióját! (A fákkal való implementálást nem kell leírnia.) Mutassa meg, hogy mikor és hogyan használjuk az UNIÓ és a HOLVAN műveleteket a Kruskal algoritmusban!

Megoldás

4. Feladat

Pista bácsi fel akar ugrálni egy n hosszú, fekete illetve fehér fokokból álló csigalépcsőn. Legfeljebb k fokot tud ugrani, de arra vigyáznia kell, hogy páros (>=2) sok foknyi ugrás után páratlan sokat és páratlan sok után mindig páros (>=2) sokat ugorjon. Adjon O(nk) lépésszámú algoritmust, amely megmondja, hogy fel tud-e úgy ugrálni a csigalépcső tetejére, hogy csak egyféle színű lépcsőfokot használ. (A lépcső fokai rendszertelenül vannak színezve, a színezést ismerjük.) Vizsgán megjegyzést fűztek hozzá: a talaj és a legteteje nem színes, csak a lépcsők; csak fölfele (előrefele) ugrál, visszafele nem.

Megoldás

5. Feladat

A hátizsák probléma órán tanult algoritmusát futtattuk egy konkrét inputon, melyben 3 tárgy szerepel. Mi lehetett ez a konkrét input, ha az alábbi táblázat keletkezett?

0 1 2 3 4 5 6 7
1 0 0 0 0 10 10 10 10
2 0 0 5 5 10 10 15 15
3 0 0 5 5 13 13 18 18


Megoldás

6. Feladat

Egy irányítatlan, élsúlyozott gráf az alábbi éllistával adott (zárójelben az élsúlyok):

A:B(1),D(3),E(2);B:A(1),C(3),D(y);D:A(3),C(y),E(x);E:A(2),B(1),D(x).

  • (a) Mi lehet x és y értéke, ha tudjuk, hogy az élsúlyok egész számok, és azt is tudjuk, hogy a B csúcsból indított Prim algoritmus az alábbi sorrendben vette be az értékeket: BE, ED, BA, BC. Vizsgán megjegyzést fűztek hozzá: az élsúlyok pozitív egész számok, a pozitív szót kifelejtették véletlenül.
  • (b) Mely éleket és milyen sorrendben választja ki a Kruskal algoritmus? (Ha több megoldás is van, akkor az összeset adja meg!)
Megoldás

7. Feladat

Létezik-e olyan X eldöntési probléma, amire X NP és X SAT egyszerre fennáll?

Megoldás

8. Feladat

P-ben van vagy NP-teljes az alábbi eldöntési probléma:

  • Input: irányítatlan G gráf
  • Kérdés: Igaz-e, hogy G-ben vagy van Hamilton-út vagy G 3 színnel színezhető?



Megoldás