„Algoritmuselmélet - Vizsga, 2013.06.06.” változatai közötti eltérés

Subdiaz (vitalap | szerkesztései)
Subdiaz (vitalap | szerkesztései)
69. sor: 69. sor:


<math>A:B(1), D(3), E(2); B:A(1), C(3), D(y); D:A(3), C(y), E(x); E:A(2), B(1), D(x).</math>
<math>A:B(1), D(3), E(2); B:A(1), C(3), D(y); D:A(3), C(y), E(x); E:A(2), B(1), D(x).</math>
* '''(a)''' Mi lehet x és y értéke, ha tudjuk, hogy az élsúlyok egész számok, és azt is tudjuk, hogy a B csúcsból indított Prim algoritmus az alábbi sorrendben vette be az értékeket: BE, ED, BA, BC.
* '''(a)''' Mi lehet x és y értéke, ha tudjuk, hogy az élsúlyok egész számok, és azt is tudjuk, hogy a B csúcsból indított Prim algoritmus az alábbi sorrendben vette be az értékeket: BE, ED, BA, BC. ''Vizsgán megjegyzést fűztek hozzá: az élsúlyok pozitív egész számok, a pozitív szót kifelejtették véletlenül.''
* '''(b)''' Mely éleket és milyen sorrendben választja ki a Kruskal algoritmus? (Ha több megoldás is van, akkor az összeset adja meg!)
* '''(b)''' Mely éleket és milyen sorrendben választja ki a Kruskal algoritmus? (Ha több megoldás is van, akkor az összeset adja meg!)
{{Rejtett
{{Rejtett
97. sor: 97. sor:
##Ha <math>y = 3</math>, akkor ezeket szintén 6 féleképpen veheti fel, tehát összesen 36 féleképpen futhat az algoritmus.
##Ha <math>y = 3</math>, akkor ezeket szintén 6 féleképpen veheti fel, tehát összesen 36 féleképpen futhat az algoritmus.
##Ha <math>y \ge 3</math>, akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.}}
##Ha <math>y \ge 3</math>, akkor a DC oldal kiesik, a maradék 2 élt 2 féleképpen veheti fel, így 12 féleképpen futhat az algoritmus.}}
===7. Feladat===
===7. Feladat===
TODO
TODO
===8. Feladat===
===8. Feladat===
TODO
TODO