„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
aNincs szerkesztési összefoglaló |
||
| 106. sor: | 106. sor: | ||
Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes. | Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes. | ||
[[Fájl:Labor2 kép8.jpg]] | |||
==8. Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!== | ==8. Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!== | ||
| 113. sor: | 112. sor: | ||
Az aszimmetrikus zavarjelekre (közös módusú zavarokra) érvényes modell: (L1 = L2 = 10 mH, Cy = 2,2 nF) | Az aszimmetrikus zavarjelekre (közös módusú zavarokra) érvényes modell: (L1 = L2 = 10 mH, Cy = 2,2 nF) | ||
[[Fájl:Labor2 kép9.jpg]] | |||
==9. Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!== | ==9. Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!== | ||
<math> | <math> \frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega C}}{j \omega L + \frac{1}{j \omega C}} = \frac{1}{j \omega L j \omega C + 1} = \frac{1}{1 - \omega^2 L C} </math> | ||
\frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega C}}{j \omega L + \frac{1}{j \omega C}} = \frac{1}{j \omega L j \omega C + 1} = \frac{1}{1 - \omega^2 L C | |||
[[Fájl:Labor2 kép10.jpg]] | |||
==10. Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!== | ==10. Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!== | ||
[[Fájl:Labor2 kép11.jpg]] | |||
==11. Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!== | ==11. Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!== | ||
| 136. sor: | 131. sor: | ||
Valóságban: <math>L_\mathrm{sz} \neq 0</math>. | Valóságban: <math>L_\mathrm{sz} \neq 0</math>. | ||
<math> | <math> \frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega \frac{C_\mathrm{y}}{2}}}{j \omega L_\mathrm{sz} + \frac{1}{j \omega \frac{C_\mathrm{y}}{2}}} = \frac{1}{j \omega L_\mathrm{sz} j \omega \frac{C_\mathrm{y}}{2} + 1} = \frac{1}{1 - \omega^2 L_\mathrm{sz} \frac{C_\mathrm{y}}{2}} </math> | ||
\frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega \frac{C_\mathrm{y}}{2}}}{j \omega L_\mathrm{sz} + \frac{1}{j \omega \frac{C_\mathrm{y}}{2}}} = \frac{1}{j \omega L_\mathrm{sz} j \omega \frac{C_\mathrm{y}}{2} + 1} = \frac{1}{1 - \omega^2 L_\mathrm{sz} \frac{C_\mathrm{y}}{2} | |||
A gyakorlatban adott frekvencián <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}[dB]</math> adott, ebből <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}</math>, majd a képlettel <math>L_\mathrm{sz}</math> számítható. | A gyakorlatban adott frekvencián <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}[dB]</math> adott, ebből <math>\frac{U_\mathrm{ki}}{U_\mathrm{be}}</math>, majd a képlettel <math>L_\mathrm{sz}</math> számítható. | ||
| 147. sor: | 139. sor: | ||
A vonalszerű vezetőben folyó áram által létrehozott mágneses térerősséget az általánosított Biot-Savart törvény adja meg: | A vonalszerű vezetőben folyó áram által létrehozott mágneses térerősséget az általánosított Biot-Savart törvény adja meg: | ||
<math> | <math> \mathbf{H}(\mathbf{r},t) = \frac{1}{4 \pi} \int_l\limits I(\mathbf{r'}, t-\frac{R}{v}) \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R^2} + \frac{1}{4 \pi v} \int_l\limits \frac{\partial I(\mathbf{r'}, t-\frac{R}{v})}{\partial t} \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R}; </math> | ||
\mathbf{H}(\mathbf{r},t) = \frac{1}{4 \pi} \int_l\limits I(\mathbf{r'}, t-\frac{R}{v}) \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R^2} + \frac{1}{4 \pi v} \int_l\limits \frac{\partial I(\mathbf{r'}, t-\frac{R}{v})}{\partial t} \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R}; | <math> R = |\mathbf{r}' - \mathbf{r}|, \quad \mathbf{R^0} = \frac{\mathbf{r} - \mathbf{r'}}{R}, \quad v = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}} </math> | ||
R = |\mathbf{r}' - \mathbf{r}|, \quad \mathbf{R^0} = \frac{\mathbf{r} - \mathbf{r'}}{R}, \quad v = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon_r \mu_r} | |||
Ebből kiolvasható, hogy az összefüggés első tagja az árammal arányos és a távolság négyzetével fordítottan arányos. A mágneses térerősségnek e tag által leírt komponensét közeltérnek vagy közeli térnek nevezzük. | Ebből kiolvasható, hogy az összefüggés első tagja az árammal arányos és a távolság négyzetével fordítottan arányos. A mágneses térerősségnek e tag által leírt komponensét közeltérnek vagy közeli térnek nevezzük. | ||
| 159. sor: | 147. sor: | ||
Az összefüggés második tagja ellenben az áram idő szerinti deriváltjával arányos, és a távolsággal (és nem a négyzetével) fordítottan arányos. Ezt az összetevőt távoltérnek vagy távoli térnek nevezzük. | Az összefüggés második tagja ellenben az áram idő szerinti deriváltjával arányos, és a távolsággal (és nem a négyzetével) fordítottan arányos. Ezt az összetevőt távoltérnek vagy távoli térnek nevezzük. | ||
Tehát a vezetőhöz közel a közeli, messze a távoli tér a domináns. Az áram idő szerinti deriváltjával való arányosság szemléletesen úgy is leírható, hogy adott nagyságú áram esetén adott távolságra a vezetéktől a távoltér annál nagyobb a közeltérnél, minél nagyobb az | Tehát a vezetőhöz közel a közeli, messze a távoli tér a domináns. Az áram idő szerinti deriváltjával való arányosság szemléletesen úgy is leírható, hogy adott nagyságú áram esetén adott távolságra a vezetéktől a távoltér annál nagyobb a közeltérnél, minél nagyobb az '''I''' áram frekvenciája. Tehát előírt erőteret annál kisebb árammal tudunk létrehozni, minél nagyobb frekvenciát választunk. | ||
- | '''H''' ismeretében konkrét esetben '''E''' rotációképzéssel számítható, de '''E''' -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és <math>\frac{1}{R}</math>-rel arányos, egy közeli, az árammal és <math>\frac{1}{R^2}</math>-tel arányos összetevője, de van még egy harmadik, még közelebbi, <math>\frac{1}{R^3}</math> szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is. | ||
-- | |||
[[Fájl:Labor2 kép12.jpg]] | |||
[[Category:Villanyalap]] | [[Category:Villanyalap]] | ||