„Laboratórium 2 - 3. Mérés ellenőrző kérdései” változatai közötti eltérés

A VIK Wikiből
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
David14 (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
3. sor: 3. sor:
__TOC__
__TOC__


==1. Egy végtelen hosszú, I szinuszos áramot szállító vezetőtől r távolságban lévő pontban határozza meg a H térerősséget és a B indukciót!==
==1. Egy végtelen hosszú, '''I''' szinuszos áramot szállító vezetőtől '''r''' távolságban lévő pontban határozza meg a '''H''' térerősséget és a '''B''' indukciót!==


Maxwell 1. egyenlete (gerjesztési törvény):
Maxwell 1. egyenlete (gerjesztési törvény):
17. sor: 17. sor:
[[Fájl:Labor2 kép3.jpg]]
[[Fájl:Labor2 kép3.jpg]]


==2. Egy végtelen hosszú, _I_ szinuszos áramot szállító vezető síkjában egy téglalap alakú, _a_ x _b_ méretű vezetőkeret helyezkedik el. A vezetőkeret _a_ méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!==
==2. Egy végtelen hosszú, '''I''' szinuszos áramot szállító vezető síkjában egy téglalap alakú, '''a x b''' méretű vezetőkeret helyezkedik el. A vezetőkeret '''a''' méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!==


A Faraday-féle indukciótörvény felhasználásával:
A Faraday-féle indukciótörvény felhasználásával:
32. sor: 32. sor:
[[Fájl:Labor2 kép4.jpg]]
[[Fájl:Labor2 kép4.jpg]]


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|2.jpg}}</div>
==3. Egy téglalap alakú, '''A x B''' méretű, '''I''' szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, '''a x b''' méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az '''A''' és '''a''' illetve '''B''' és '''b''' méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?==


==3. Egy téglalap alakú, _A_ x _B_ méretű, _I_ szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, _a_ x _b_ méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az _A_ és _a_ illetve _B_ és _b_ méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?==
Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása.


Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása.
<math> \Sigma \Phi = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) = </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] = </math>
<math> = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>
<math> U_{\mathrm{i}} = - \frac{\partial\Phi}{\partial t} = - \frac{\mu \cdot \hat{I} \cdot (- \sin \omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] = </math>
<math> = \frac{\mu \cdot \hat{I}  \cdot \omega \cdot \sin \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>


<math>
<math> L_{\mathrm{k}} = \frac{\Phi}{I} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] </math>
\begin{displaymath}
\Sigma \Phi = \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left( a \cdot \ln \frac{d+b}{d} + a \cdot \ln \frac{B-d}{B-b-d} + b \cdot \ln \frac{a+c}{c} + b \cdot \ln \frac{A-c}{A-a-c} \right) =
\end{displaymath}
\begin{displaymath}
= \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \left(\ln \frac{d+b}{d} + \ln \frac{B-d}{B-b-d}\right) + b \cdot \left(\ln \frac{a+c}{c} + \ln \frac{A-c}{A-a-c}\right) \right] =
\end{displaymath}
\begin{displaymath}
= \frac{\mu \cdot \hat{I} \cdot \cos \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right]
\end{displaymath}
\begin{displaymath}
U_{\mathrm{i}} = - \frac{\partial\Phi}{\partial t} = - \frac{\mu \cdot \hat{I} \cdot (- \sin \omega t) \cdot \omega}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right] =
\end{displaymath}
\begin{displaymath}
= \frac{\mu \cdot \hat{I}  \cdot \omega \cdot \sin \omega t}{2 \pi} \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right]
\end{displaymath}
\begin{displaymath}
L_{\mathrm{k}} = \frac{\Phi}{I} = \frac{\mu}{2 \pi } \left [a \cdot \ln \frac{(d+b)(B-d)}{d(B-b-d)} + b \cdot \ln \frac{(a+c)(A-c)}{c(A-a-c)}  \right]
\end{displaymath}</math>


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|3.jpg}}</div>
[[Fájl:Labor2 kép5.jpg]]


==4. Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!==
==4. Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!==


<math>
<math> C' = \frac{2 \pi \varepsilon}{\ln \frac{d^2}{r_1 r_2}} = \frac{\pi \varepsilon}{\ln \frac{d}{r}} </math>
\begin{displaymath}
C' = \frac{2 \pi \varepsilon}{\ln \frac{d^2}{r_1 r_2}} = \frac{\pi \varepsilon}{\ln \frac{d}{r}}
\end{displaymath}</math>


A második összefüggés abban az esetben érvényes, ha a kettősvezeték (Lecher-vezeték) mindkét vezetője azonos sugarú.
A második összefüggés abban az esetben érvényes, ha a kettősvezeték (Lecher-vezeték) mindkét vezetője azonos sugarú.


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|4.jpg}}</div>
[[Fájl:Labor2 kép6.jpg]]


==5. Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!==
==5. Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!==


<math>
<math> R = \varrho \cdot \frac{l}{a \cdot h} </math>
\begin{displaymath}
 
R = \varrho \cdot \frac{l}{a \cdot h}
Ahol ''<math>\varrho</math>'' a fajlagos ellenállás, '''l''' a vezetékszakasz hossza, '''a''' a szélessége, '''h''' pedig a vastagsága.
\end{displaymath}</math>
 
<math> \Delta R = \frac{\partial R}{\partial \varrho} \cdot \Delta \varrho + \frac{\partial R}{\partial l} \cdot \Delta l + \frac{\partial R}{\partial a} \cdot \Delta a + \frac{\partial R}{\partial h} \cdot \Delta h </math>
 
<math> \Delta R = \frac{l}{a \cdot h} \cdot \Delta \varrho + \frac{\varrho}{a \cdot h} \cdot \Delta l - \varrho \cdot \frac{l}{a^2 \cdot h} \cdot \Delta a - \varrho \cdot \frac{l}{a \cdot h^2} \cdot \Delta h </math>


Ahol ''<math>\varrho</math>'' a fajlagos ellenállás, _l_ a vezetékszakasz hossza, _a_ a szélessége, _h_ pedig a vastagsága.
<math> \frac{\Delta R}{R} = \frac{\Delta \varrho}{\varrho} + \frac{\Delta l}{l} - \frac{\Delta a}{a} - \frac{\Delta h}{h} </math>


<math>
<math> u_R = \sqrt{\left(\frac{\Delta \varrho}{\varrho}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta h}{h}\right)^2} </math>
\begin{displaymath}
\Delta R = \frac{\partial R}{\partial \varrho} \cdot \Delta \varrho + \frac{\partial R}{\partial l} \cdot \Delta l + \frac{\partial R}{\partial a} \cdot \Delta a + \frac{\partial R}{\partial h} \cdot \Delta h
\end{displaymath}
\begin{displaymath}
\Delta R = \frac{l}{a \cdot h} \cdot \Delta \varrho + \frac{\varrho}{a \cdot h} \cdot \Delta l - \varrho \cdot \frac{l}{a^2 \cdot h} \cdot \Delta a - \varrho \cdot \frac{l}{a \cdot h^2} \cdot \Delta h
\end{displaymath}
\begin{displaymath}
\frac{\Delta R}{R} = \frac{\Delta \varrho}{\varrho} + \frac{\Delta l}{l} - \frac{\Delta a}{a} - \frac{\Delta h}{h}
\end{displaymath}
\begin{displaymath}
u_R = \sqrt{\left(\frac{\Delta \varrho}{\varrho}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta a}{a}\right)^2 + \left(\frac{\Delta h}{h}\right)^2}
\end{displaymath}</math>


A standard bizonytalanság számításakor tehát az egyes hibakomponenseket valószínűségi módon kell összegezni (ld. GUM).
A standard bizonytalanság számításakor tehát az egyes hibakomponenseket valószínűségi módon kell összegezni (ld. GUM).


<div align="center">{{InLineImageLink|Villanyalap|Labor2Kerdes3|5.jpg}}</div>
[[Fájl:Labor2 kép7.jpg]]


==6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!==
==6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!==

A lap 2013. február 10., 00:19-kori változata


1. Egy végtelen hosszú, I szinuszos áramot szállító vezetőtől r távolságban lévő pontban határozza meg a H térerősséget és a B indukciót!

Maxwell 1. egyenlete (gerjesztési törvény):

2. Egy végtelen hosszú, I szinuszos áramot szállító vezető síkjában egy téglalap alakú, a x b méretű vezetőkeret helyezkedik el. A vezetőkeret a méretű oldala párhuzamos az áramot szállító vezetővel. Határozza meg a vezetőkeretben indukált feszültséget!

A Faraday-féle indukciótörvény felhasználásával:


Az integrálást tehát csak a b oldal szerint végezzük el, mivel a oldal mentén a mágneses térerősség állandó. A keret távolsága a vezetőtől d.

3. Egy téglalap alakú, A x B méretű, I szinuszos áramot szállító vezetőkeret síkjában, a kereten belül egy második, a x b méretű kisebb vezetőkeret aszimmetrikusan helyezkedik el. Az A és a illetve B és b méretű oldalak párhuzamosak. A legegyszerűbb modell alapján becsülve, közelítőleg mekkora feszültség indukálódik a második keretben? Mekkora a kölcsönös induktivitás?

Az alkalmazott modellben a külső keret által a belső keretben indukált feszültséget oly módon számítjuk, hogy a külső keret oldalait külön-külön, végtelen hosszú vezetőnek tekintjük, így felhasználható az előző kérdés megoldása.

4. Határozza meg két végtelen hosszú, párhuzamosan futó hengeres vezető között a hosszegységre eső villamos kapacitást!

A második összefüggés abban az esetben érvényes, ha a kettősvezeték (Lecher-vezeték) mindkét vezetője azonos sugarú.

5. Határozza meg nyomtatott huzalozás esetén egy vezetőszakasz ellenállását és annak bizonytalanságát!

Ahol a fajlagos ellenállás, l a vezetékszakasz hossza, a a szélessége, h pedig a vastagsága.

A standard bizonytalanság számításakor tehát az egyes hibakomponenseket valószínűségi módon kell összegezni (ld. GUM).

6. Tanulmányozza a CD11.4599.151 típusú hálózati szűrő működését és műszaki adatait!

A CD11.4599.151 típusú szűrővel rendelkező hálózati csatlakozó 2 pólusú kapcsolója lengő vezetéken helyezkedik el. Névleges áramerőssége 1A, általános célú berendezésekbe tervezték, 1 pólusú beépített olvadóbiztosítékkal.

A belső elemek értékei: L= 2 x 10 mH, Cx = 68 nF, Cy = 2,2 nF.

A Cx és Cy kondenzátorok szigorú szabványok alapján tervezett, öngyógyuló dielektrikumos fóliakondenzátorok.

A szűrő kettős feladatot lát el:

  • Az eszközre jutó feszültségcsúcsok ellen véd, amelyet elektromechanikus kapcsolók ill. relék okozhatnak
  • Ugyanez a szűrő a másik irányban is működik, az eszköz által keltett nagyfrekvenciás zavarokat csillapítja

A zavarok fajtái:
A) Feszültségingadozások
B) Harmónikus frekvenciájú inerferencia (100 Hz - 2 kHz)
C) Tranziensek által okozott interferencia (300 MHz-ig)
D) Szinusz szerű zavarok (akár 1 GHz-ig)

A szűrők alkotóelemei általában kondenzátorok és tekercsek, de gyakran alkalmaznak kondenzátor-kisütő ellenállásokat, túlfeszültség-védőket és igen nagyfrekvenciás fojtókat is. Emiatt a szűrő általában több egymást követő fokozatból áll.

A zavarok terjedhetnek közvetlen vezetéssel, kapacitív és induktív csatolással valamint sugárzással.

A zavarokat feloszthatjuk közös és differenciális módusú zavarokra. Földeletlen zavarforrásból származó zavaró jel a tápáramhoz hasonló módon, az egyik vezetéken befolyik az eszközbe, a mmásikon pedig ki. Ezt nevezzük differenciális módusú zavaró jelnek. A közös módusú zavar ezzel szemben (a mechanikai kialakítás következtében) mindkét tápvezetéken folyik be az eszközbe, és a földelésen folyik vissza a zavarforráshoz.

A közös módusú zavarok csillapítása --> ld. 7. kérdés

A differenciális módusú zavarokat a fojtó csak kismértékben csillapítja (ld. 7. kérdés), ezért van szükség a Cy kondenzátorok beépítésére, amelyek viszont a védővezetőbe folyó (ún. szivárgási) áramot okoznak. Ha a szivárgási áramra vonatkozó követelmény szigorú, ezeket el kell hagyni (pl. orvosi célú szűrők, melyekben a nagy Cx kapacitás kisütésére még egy ellenállást is beépítenek, hogy a táplálatlan szűrő kimenetén ne maradhasson fenn az üzemi feszültség).

7. A szűrő közös vasmagon elhelyezett két tekercsének milyen a menetirányítása és miért?

A szűrő egy rádiófrekvenciás áramkompenzált fojtó (angolul RF Current Compensated Suppression Choke). A tekercsei úgy vannak irányítva, hogy a rajtuk folyó üzemi áramok által létrehozott fluxusok ellentétes irányúak legyenek, így kioltsák egymást. Ezek alapján, az áramirányok figyelembevételével mondhatjuk, hogy a tekercsek menetirányítása ellentétes.

Emiatt a differenciális módusú zavarok által keltett fluxusok (ideális esetben, azaz tökéletes csatolást feltéve) kioltják egymást. A közös módusú zavarok által keltett fluxusok viszont egyirányúak, így az ilyen zavarokat a fojtó szűrni tudja. A valóságban viszont a laza csatolás miatt fellépő szórási fluxus következtében a differenciális módusú zavarok kismértékű csillapítására is képes.

Ezen a helyen volt linkelve a 7.jpg nevű kép a régi wiki ezen oldaláról. (Kérlek hozd át ezt a képet ide, különben idővel el fog tűnni a régi wikivel együtt)


8. Adja meg a szűrő aszimmetrikus zavarjelre érvényes modelljét!

Az aszimmetrikus zavarjelekre (közös módusú zavarokra) érvényes modell: (L1 = L2 = 10 mH, Cy = 2,2 nF)

Ezen a helyen volt linkelve a 8.jpg nevű kép a régi wiki ezen oldaláról. (Kérlek hozd át ezt a képet ide, különben idővel el fog tűnni a régi wikivel együtt)

9. Ideális elemeket feltételezve írja fel a szűrő csillapítását aszimmetrikus zavarjelre!

Értelmezés sikertelen (ismeretlen „\begin{displaymath}” függvény): {\displaystyle \begin{displaymath} \frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega C}}{j \omega L + \frac{1}{j \omega C}} = \frac{1}{j \omega L j \omega C + 1} = \frac{1}{1 - \omega^2 L C} \end{displaymath}}

Ezen a helyen volt linkelve a 9.jpg nevű kép a régi wiki ezen oldaláról. (Kérlek hozd át ezt a képet ide, különben idővel el fog tűnni a régi wikivel együtt)


10. Adja meg a szűrő szimmetrikus zavarjelre érvényes modelljét!

Ezen a helyen volt linkelve a 10.jpg nevű kép a régi wiki ezen oldaláról. (Kérlek hozd át ezt a képet ide, különben idővel el fog tűnni a régi wikivel együtt)

11. Ideális elemeket feltételezve írja fel a szűrő csillapítását szimmetrikus zavarjelre!

Ideális eset: (szivárgási induktivitás) --> a csillapítás végtelen, a kimeneti feszültség bármely bemeneti feszültség esetén zérus. //-> Ez szerintem (Prímás) nem igaz, már csak a képletből kiindulva sem: ha Lsz = 0, akkor a csillapítás 1, így Ube = Uki, ami szépen látszik is a kapcsolási rajzon.

Valóságban: .

Értelmezés sikertelen (ismeretlen „\begin{displaymath}” függvény): {\displaystyle \begin{displaymath} \frac{U_\mathrm{ki}}{U_\mathrm{be}} = \frac{\frac{1}{j \omega \frac{C_\mathrm{y}}{2}}}{j \omega L_\mathrm{sz} + \frac{1}{j \omega \frac{C_\mathrm{y}}{2}}} = \frac{1}{j \omega L_\mathrm{sz} j \omega \frac{C_\mathrm{y}}{2} + 1} = \frac{1}{1 - \omega^2 L_\mathrm{sz} \frac{C_\mathrm{y}}{2}} \end{displaymath}}

A gyakorlatban adott frekvencián adott, ebből , majd a képlettel számítható.

12. Elektromágneses tereknél mit nevezünk közeltérnek illetve távoltérnek?

A vonalszerű vezetőben folyó áram által létrehozott mágneses térerősséget az általánosított Biot-Savart törvény adja meg:

Értelmezés sikertelen (SVG (a MathML egy böngészőkiegészítővel engedélyezhető): Érvénytelen válasz („Math extension cannot connect to Restbase.”) a(z) https://wikimedia.org/api/rest_v1/ szervertől:): {\displaystyle \begin{displaymath} \mathbf{H}(\mathbf{r},t) = \frac{1}{4 \pi} \int_l\limits I(\mathbf{r'}, t-\frac{R}{v}) \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R^2} + \frac{1}{4 \pi v} \int_l\limits \frac{\partial I(\mathbf{r'}, t-\frac{R}{v})}{\partial t} \frac{\mathrm{d}\mathbf{l}' \times \mathbf{R^0}}{R}; \end{displaymath} \begin{displaymath} R = |\mathbf{r}' - \mathbf{r}|, \quad \mathbf{R^0} = \frac{\mathbf{r} - \mathbf{r'}}{R}, \quad v = \frac{1}{\sqrt{\varepsilon \mu}} = \frac{c}{\sqrt{\varepsilon_r \mu_r}} \end{displaymath}}

Ebből kiolvasható, hogy az összefüggés első tagja az árammal arányos és a távolság négyzetével fordítottan arányos. A mágneses térerősségnek e tag által leírt komponensét közeltérnek vagy közeli térnek nevezzük.

Az összefüggés második tagja ellenben az áram idő szerinti deriváltjával arányos, és a távolsággal (és nem a négyzetével) fordítottan arányos. Ezt az összetevőt távoltérnek vagy távoli térnek nevezzük.

Tehát a vezetőhöz közel a közeli, messze a távoli tér a domináns. Az áram idő szerinti deriváltjával való arányosság szemléletesen úgy is leírható, hogy adott nagyságú áram esetén adott távolságra a vezetéktől a távoltér annál nagyobb a közeltérnél, minél nagyobb az _I_ áram frekvenciája. Tehát előírt erőteret annál kisebb árammal tudunk létrehozni, minél nagyobb frekvenciát választunk.

_H_ ismeretében konkrét esetben _E_ rotációképzéssel számítható, de _E_ -re is megadható az előbbihez hasonló összefüggés, de az jóval bonyolultabb. Ennek is van egy távoli, az áram deriváltjával és -rel arányos, egy közeli, az árammal és -tel arányos összetevője, de van még egy harmadik, még közelebbi, szerint eltűnő és az áram idő szerinti integráljával (a töltéssel) arányos összetevője is.

Ezen a helyen volt linkelve a 12.jpg nevű kép a régi wiki ezen oldaláról. (Kérlek hozd át ezt a képet ide, különben idővel el fog tűnni a régi wikivel együtt)

-- TGabor - 2006.02.26. -- Tibee - 2006.02.27. -- lomos - 2006.02.28. -- Tibee - 2006.03.05.