„Fizika 2 - Vizsga, 2013.01.02.” változatai közötti eltérés

A VIK Wikiből
Hryghr (vitalap | szerkesztései)
Mp9k1 (vitalap | szerkesztései)
38. sor: 38. sor:
===4. feladat (a feladatlapon 2. sorszámmal) ===
===4. feladat (a feladatlapon 2. sorszámmal) ===


A gömbhéj egy <math>\mathrm d r</math> vastagságú gömbhéjának a <math>\mathrm dR</math> ellenállása (a <math>R = \varrho \frac{l}{A}</math> képletbe behelyettesítve):
A gömbhély egy <math>\mathrm d r</math> vastagságú gömbhélyának a <math>\mathrm dR</math> ellenállása (a <math>R = \varrho \frac{l}{A}</math> képletbe behelyettesítve):


<math>\mathrm d R = \frac 1 \sigma \frac{\mathrm d r}{4 r^2 \pi}</math>
<math>\mathrm d R = \frac 1 \sigma \frac{\mathrm d r}{4 r^2 \pi}</math>
45. sor: 45. sor:


<math>R = \int \mathrm dR = \int_a^b \frac 1 \sigma \frac{\mathrm d r}{4 r^2 \pi} = \frac{1}{4 \sigma \pi} \int_a^b \frac{\mathrm d r}{r^2} = ...</math>
<math>R = \int \mathrm dR = \int_a^b \frac 1 \sigma \frac{\mathrm d r}{4 r^2 \pi} = \frac{1}{4 \sigma \pi} \int_a^b \frac{\mathrm d r}{r^2} = ...</math>


===5. feladat (a feladatlapon 3. sorszámmal)===
===5. feladat (a feladatlapon 3. sorszámmal)===
A Newton-i erő-ellenerő törvényre figyeljünk, a vezetők F erővel vonzzák egymást, az egyik F-fel vonzza a másikat, a másik szintén F-fel az egyiket. Előjelben térnek el, ha egy dimenzióban akarjuk vizsgálni. Tehát azt az erőt keressük, amit az egyik kifejt a másikra.
Az Ampere-tövényt használjuk fel, miszerint:
Az Ampere-tövényt használjuk fel, miszerint:
<math>\oint{B}ds = \mu_0 \int{j}dA</math>
<math>\oint{B}ds = \mu_0 \int{j}dA</math>


Megjegyzés: itt nem vesszük figyelembe a deriváltat tartalmazó tagot a jobb oldalon, mert az áram, így az elektromos tér is állandó.
Megjegyzés: itt nem vesszük figyelembe a deriváltat tartalmazó tagot a jobb oldalon, mert az áram, így az elektromos tér is állandó.
Egyenes vezető mágneses tere a sugártól függ, jobbkéz-szabály szerint forog körbe. Az áramsűrűség integrálja a felületre maga az átfolyó áramerősség.
<math>B(r) 2 r \pi = \mu_0 I \Rightarrow B(r) = \frac{\mu_0 I}{2 r \pi}</math>
A kifejtett erő levezethető a Lorentz-erő képletéből:
<math>F_L = q (v \times B) \Rightarrow F = I (l \times B)</math>, mert <math>q v = q \frac{dl}{dt} \rightarrow \frac{dq}{dt} l = I l</math>
Mivel a mágneses tér az r sugarú körön érintő irányú, merőleges a vezetőre, tehát a vektorszorzat egyszerű szorzás:
<math>F = I l B(r) \Rightarrow I = \frac{F}{l B(r)} = \frac{F}{l \frac{\mu_0 I}{2 r \pi}}</math>, mindkét oldalt I-vel szorozva:
<math>I^2 = \frac{F 2 r \pi}{\mu_0 l} \Rightarrow I = \pm\sqrt{\frac{F 2 r \pi}{\mu_0 l}} = \pm 20 (N)</math>
Tehát c) az előjel pedig azt jelzi, hogy mindkét irányba folyhat a 20-20 amper párhuzamosan.


==Esszékérdések==
==Esszékérdések==
//TODO: ezt valaki nézze ki Hudson-Nelsonból
//TODO: ezt valaki nézze ki Hudson-Nelsonból

A lap 2013. január 5., 17:56-kori változata


A vizsgafeladatok. (Katt ide!)

A másik csoportnak ugyanezek a feladatok voltak, a sorrend volt csak más.

Számítási feladatok

1. feladat (a feltöltött feladatlapon 4. sorszámmal)

Fluxus a kör felületén: (skalárszorzat miatt)

Indukált feszütség:

Ez akkor maximális ha , tehát

Tehát d)

2. feladat (a feladatlapon 9. sorszámmal)

A Gauss-törvényből következik, hogy az E tér csak a bezárt töltéstől függ. Mivel 1cm < 1.25cm < 1.5cm, külső henger töltése/tere lényegtelen. A térerősség sugárirányú a rendszer szimmetriája miatt, kifelé mutat mert pozitív töltés. A felhasznált Gauss-felület a hengerpalást, a záró lapok a végtelen hossz (a) miatt elhanyagolhatók.

A felületi töltéssűrűséggel és a palást területével kiszámítható a bezárt töltés, másrészt E az adott köríven konstans, merőleges dA-ra, ezért szorzat az integrál.

, ha

Tehát b)

4. feladat (a feladatlapon 2. sorszámmal)

A gömbhély egy vastagságú gömbhélyának a ellenállása (a képletbe behelyettesítve):

A teljes R ellenállás:


5. feladat (a feladatlapon 3. sorszámmal)

A Newton-i erő-ellenerő törvényre figyeljünk, a vezetők F erővel vonzzák egymást, az egyik F-fel vonzza a másikat, a másik szintén F-fel az egyiket. Előjelben térnek el, ha egy dimenzióban akarjuk vizsgálni. Tehát azt az erőt keressük, amit az egyik kifejt a másikra. Az Ampere-tövényt használjuk fel, miszerint:

Megjegyzés: itt nem vesszük figyelembe a deriváltat tartalmazó tagot a jobb oldalon, mert az áram, így az elektromos tér is állandó.

Egyenes vezető mágneses tere a sugártól függ, jobbkéz-szabály szerint forog körbe. Az áramsűrűség integrálja a felületre maga az átfolyó áramerősség.

A kifejtett erő levezethető a Lorentz-erő képletéből:

, mert

Mivel a mágneses tér az r sugarú körön érintő irányú, merőleges a vezetőre, tehát a vektorszorzat egyszerű szorzás:

, mindkét oldalt I-vel szorozva:

Tehát c) az előjel pedig azt jelzi, hogy mindkét irányba folyhat a 20-20 amper párhuzamosan.

Esszékérdések

//TODO: ezt valaki nézze ki Hudson-Nelsonból