„Digit1Beugró” változatai közötti eltérés
A VIK Wikiből
70. sor: | 70. sor: | ||
=2. Ellenőrző kérdések= | =2. Ellenőrző kérdések= | ||
;201 Írja fel a Boole algebra kommutativitási axiómáit | |||
: <math>A*B=B*A</math> | |||
<math>A*B=B*A</math> | : <math>A+B=B+A</math> | ||
;202 Írja fel a Boole algebra disztributivitási axiómáit! | |||
<math>A+B=B+A</math> | : <math>A*(B+C)=AB+AC</math> | ||
: <math>A+(B*C)=(A+B)*(A+C)</math> | |||
;203 Mi a Boole algebrában a dualitás elve? | |||
: A 0-ák és 1-ek valamint a VAGY és ÉS műveletek felcserélhetőek. | |||
;204 Írja fel a DeMorgan azonosságot! | |||
<math>A*(B+C)=AB+AC</math> | : <math>\bar{A*B} = \bar{A} + \bar{B}</math> | ||
: <math>\bar{A+B} = \bar{A}*\bar{B}</math> | |||
<math>A+(B*C)=(A+B)*(A+C)</math> | ;205 Írja fel a Boole algebra negálás műveletét meghatározó definíciót! | ||
: Minden <math>A</math> esetén létezik olyan <math>\bar{A}</math>, hogy: | |||
: <math>A+\bar{A}=1</math> | |||
: <math>A*\bar{A}=0</math> | |||
;206. Elnyelési tulajdonság | |||
A 0-ák és 1-ek valamint a VAGY és ÉS műveletek felcserélhetőek. | : <math>A*(A+B)=A</math>, illetve a dualitás elve miatt <math>A+(B*A)=A</math> | ||
;207. Írja fel a Boole algebrában a konstanssal való műveletek eredményeit (A.0, A.1,A+0, A+1)! | |||
: <math>A*0=0</math> | |||
: <math>A*1=1</math> | |||
: <math>A+0=A</math> | |||
<math>\bar{A*B} = \bar{A} + \bar{B}</math> | : <math>A+1=1</math> | ||
;208 Hány különböző n változós logikai függvény van <math>Z=(a_1,a_2,a_3,...,a_n)</math>? | |||
<math>\bar{A+B} = \bar{A}*\bar{B}</math> | : <math>2^{2^n}</math> | ||
;209 Mi az a diszjunktív algebrai normál alak? | |||
: Szorzatok összege (ÉSek VAGYa) | |||
;210 Mi az a konjunktív algebrai normál alak? | |||
: Összegek szorzata (VAGYok ÉSe) | |||
Minden <math>A</math> esetén létezik olyan <math>\bar{A}</math>, hogy: | ;211 Melyek a kétváltozós szimmetrikus logikai függvények (amelyek nem változnak, ha a két változót felcseréljük) | ||
: ÉS, VAGY, XOR, NAND (not and), NOR (not or), ekvivalencia (not xor) | |||
<math>A+\bar{A}=1</math> | ;212 Rajzolja fel és peremezze az ABCD változókra a a Karnaugh táblát és jelölje be az <math>\bar{A}*B*\bar{C}*D</math> minterm helyét! | ||
<math>A*\bar{A}=0</math> | |||
<math>A*(A+B)=A</math>, illetve a dualitás elve miatt <math>A+(B*A)=A</math> | |||
<math>A*0=0</math> | |||
<math>A*1=1</math> | |||
<math>A+0=A</math> | |||
<math>A+1=1</math> | |||
<math>2^{2^n}</math> | |||
Szorzatok összege (ÉSek VAGYa) | |||
Összegek szorzata (VAGYok ÉSe) | |||
ÉS, VAGY, XOR, NAND (not and), NOR (not or), ekvivalencia (not xor) | |||
A lap 2012. november 6., 13:44-kori változata
1. Ellenőrző kérdések
- 101 Mi korlátozza az „analóg elvű” feldolgozó egységekből kialakítható rendszer méreteit?
- A csatornába beszűrődő zaj: Távolsági átvitel során a jelhez zaj adódik, amelyet a távolsági közvetítés során használt erősítő felerősít. Analóg egységenként ~0.1% zaj keletkezik.
- 102 Mi korlátozza a „digitális elvű” feldolgozó egységekből kialakítható rendszer méreteit?
- A p-faktor (megbízhatósági faktor), mely megadja, hogy az alkatrész mekkora valószínűséggel romlik el. Általában:
- 103 Milyen feladatai lehetnek a „kódoló egységnek”?
- forráskódolás (tömörítés), csatornakódolás, titkosítás
- 104 Milyen rossz tulajdonságai lehetnek a „csatornának”?
- zaj, támadhatóság, költséges
- 105 Mi a „forráskódolás” célja?
- Célja az információ tömörítése (pl. analóg (végtelen) jel digitalizálása (véges adatok)). Egy jelhez egy kódszó rendelése.
- 106 Mikor mondjuk egy kódkészletről, hogy megfejthető?
- Egy kód megfejhető, ha a kódszavaiból előállított tetszőleges üzenet egyértelműen felbontható a kód kódszavaira. Ha minden kódszóból visszanyerhető az eredeti információ (pl. prefix kódok (pl. fix hosszuságú kód), végkarakteres kód)
- 107 Mi a prefix kód?
- A lehetséges kódszavak közül egyik sem folytatása a másiknak.
- 108 Melyik kódolási módszert nevezzük „optimálisnak”?
- Huffman kódolást
- 109 Hogyan kell kiszámolni az „átlagos kódhosszt”?
- , ahol p az előfordulási valószínűség, l a kódszóhossz
- 110 Hogyan kell kiszámolni egy forrás „entrópiáját”?
- , ahol p a bekövetkezés valószínűsége
- 111 Mi az a „forráskiterjesztés” és mi a célja?
- Kettő vagy több esemény egy eseményként kezelése. Célja a kód optimalizálása.
- 112 Mennyi a „veszteségmentes tömörítés” alsó határa?
- Az entrópia.
- 113 Mennyi a „veszteséges tömörítés” alsó határa?
- Nincs alsó határa, maximum elveszítünk az összes adatot.
- 114 Mi a „folt hiba” és mi a „véletlen hiba”?
- Folt hiba: átvitel során több egymás utáni hiba. Véletlen hiba: átvitel során véletlenül, nem egymás után bekövetkezett hibák.
- 115 Mi az „eltörlődéses hiba”?
- Az átvitel során egy bit törlődik, de a hibát észreveszi a vevő.
- 116 Mi az „átállítódásos hiba”?
- Az átvitel során egy bit értéke invertálódik.
117 Milyen hibavédelmi stratégiákat ismer?
- paritásbit
- ismétléses kód
- Hamming-kód (többszörös paritásbit a kódszó bitcsoportjaira)
- többszörös elküldés
- 118 Egy Hamming távolságú kód mire használható eltörlődéses csatornánál?
- Hibajelzésre n hosszig, hibajavításra hosszig.
- 119 Egy Hamming távolságú kód mire használható átállítódásos csatornánál?
- Hibajelzésre hosszig, hibajavításra alsó egészrészéig
- 120 q elemű abc-ből képzett k hosszúságú információt akarunk védeni paritáskóddal. Milyen hosszú lesz a kód, mekkora lesz a Hamming távolsága és hogyan kell megkonstruálni a redundáns részt?
- k+1 hosszúságú lesz a kód. Az ABC minden eleméhez hozzárendelünk egy számot. Előre eldöntjük, hogy az összegük páratlan vagy páros lesz a teljes kódszóban és az alapján teszünk a kódszó végére redundáns részt. A Hamming-távolság 2.
- 121 Mennyi a Hamming kód Hamming távolsága és milyen hibavédelemre használható?
- H=3, Egy hiba javítására alkalmas, vagy két hiba jelzésére.
- 122 Milyen számábrázolási módszereket tanultunk?
- előjeles abszolútértékes
- egyes komplemens
- kettes komplemens
- offszet
- 123 Írja fel 5 biten a decimális +9 és -9 értékeit a tanult számábrázolásokban!
Számábrázolás | +9 | -9 |
Előjeles abszolút értékes | 01001 | 11001 |
Egyes komplemens | 01001 | 10110 |
Kettes komplemens | 01001 | 10111 |
Offszet | 11001 | 00111 |
- 124 Milyen tulajdonságú kódokat nevezünk „pozíciókódnak”?
- Az egymásután következő pozíciók kódjának Hamming-távolsága egy.
- 125 Milyen pozíciókódokat ismer és n biten hány pozíció kódolható velük?
- Gray-kód: n biten pozíció. Generálása rekurzív módon, tükrözéses módszerrel történik.
- Johnson-kód: n biten 2n pozíció
2. Ellenőrző kérdések
- 201 Írja fel a Boole algebra kommutativitási axiómáit
- 202 Írja fel a Boole algebra disztributivitási axiómáit!
- 203 Mi a Boole algebrában a dualitás elve?
- A 0-ák és 1-ek valamint a VAGY és ÉS műveletek felcserélhetőek.
- 204 Írja fel a DeMorgan azonosságot!
- 205 Írja fel a Boole algebra negálás műveletét meghatározó definíciót!
- Minden esetén létezik olyan , hogy:
- 206. Elnyelési tulajdonság
- , illetve a dualitás elve miatt
- 207. Írja fel a Boole algebrában a konstanssal való műveletek eredményeit (A.0, A.1,A+0, A+1)!
- 208 Hány különböző n változós logikai függvény van ?
- 209 Mi az a diszjunktív algebrai normál alak?
- Szorzatok összege (ÉSek VAGYa)
- 210 Mi az a konjunktív algebrai normál alak?
- Összegek szorzata (VAGYok ÉSe)
- 211 Melyek a kétváltozós szimmetrikus logikai függvények (amelyek nem változnak, ha a két változót felcseréljük)
- ÉS, VAGY, XOR, NAND (not and), NOR (not or), ekvivalencia (not xor)
- 212 Rajzolja fel és peremezze az ABCD változókra a a Karnaugh táblát és jelölje be az minterm helyét!