„Mikroökonómia típusfeladatok” változatai közötti eltérés
aNincs szerkesztési összefoglaló |
|||
18. sor: | 18. sor: | ||
Ez azt jelenti, hogy többet kínálunk, mint amit megvesznek, így túlkínálat van, melynek értéke 230 - 80 = 150 | Ez azt jelenti, hogy többet kínálunk, mint amit megvesznek, így túlkínálat van, melynek értéke 230 - 80 = 150 | ||
=Adóztatás= | |||
Egy kompetitív (tökéletes versenyző) piacon a keresleti és kínálati függvények a következők: Q=400-4p és Q=6p-250. Az állam t=20 mennyiségi adót vet ki, amit a termelőknek kell befizetniük. Mennyivel nő a a piaci ár? | |||
Természetesen drágábban fogják adni az árut, így a kínálati függvény Q=6(p-20)-250=6p-370 lesz. Ezzel újra ki kell számolni az egyensúlyi árat, amire p=77 jön ki, tehát 12 egységgel növekedett az ár. | |||
=Árrugalmasság= | =Árrugalmasság= |
A lap 2012. november 1., 22:20-kori változata
A feladatok könyebb megértéséhez először olvasd el az alapfogalmakat
Piaci egyensúly
Egy kompetitív (tökéletes versenyző) piacon a keresleti és kínálati függvények a következők: Q=400-4p és Q=6p-250. Mennyi az egyensúlyi ár?
A keresleti (Q=400-4p) és kínálati (Q=6p-250) függvények metszete adja az egyensúlyi árat és mennyiséget. Az egyenletrendszer megoldva megkapjuk, hogy p=65 és Q=140
Túlkínálat/Hiány
Egy kompetitív (tökéletes versenyző) piacon a keresleti és kínálati függvények a következők: Q=400-4p és Q=6p-250. Ha a piaci ár 80/darab lenne, akkor mit tudnánk mondani a túlkínálatról?
Az előző feladat alapján tudjuk, hogy nem az egyensúlyi áron megy az árucsere. Számoljuk ki a keresleti és kínálati függvényt a p=80 érték esetén.
Keresleti: Q = 400 - 4p = 80
Kínálati: Q = 6p - 250 = 230
Ez azt jelenti, hogy többet kínálunk, mint amit megvesznek, így túlkínálat van, melynek értéke 230 - 80 = 150
Adóztatás
Egy kompetitív (tökéletes versenyző) piacon a keresleti és kínálati függvények a következők: Q=400-4p és Q=6p-250. Az állam t=20 mennyiségi adót vet ki, amit a termelőknek kell befizetniük. Mennyivel nő a a piaci ár?
Természetesen drágábban fogják adni az árut, így a kínálati függvény Q=6(p-20)-250=6p-370 lesz. Ezzel újra ki kell számolni az egyensúlyi árat, amire p=77 jön ki, tehát 12 egységgel növekedett az ár.
Árrugalmasság
Egy kompetitív (tökéletes versenyző) piacon a keresleti és kínálati függvények a következők: Q=400-4p és Q=6p-250. Határozza meg a piaci kereslet árrugalmasságát (abszulút értékben) ha az ár 80-ról 65-re csökken.
Ehhez az árrugalmasság képletét kell tudni, ami . A két árat ismerjük (80 és 65), a két mennyiséget pedig a keresleti és kínálati függvényekkel meg tudjuk határozni (egyszerű behelyettesítés ez is, a kapott értékek közül a kisebbet kell venni, így 80 és 140 jön ki). Most már tudunk mindent a feladathoz,
Fedezeti pont
Egy tökéletesen versenyző iparág egy vállalatának rövid távú költségfüggvénye . A határköltsége . Mekkora piaci ár esetén termel a vállalat éppen fedezeti ponton?
Ehhez tudni kell, hogy a fedezeti költség a határköltség és az átlagos költség metszéspontja. A határköltséget ismerjük (egyébként a költségfüggvény deriváltja), az átlagköltség pedig a , azaz átlagosan egy termék mennyibe kerül.
Innen már triviális a megoldás: MC=AC
. Mivel darabszámot keresünk csak a pozitív megoldás kell. A megoldáshoz ki kell számolni az árat, amit az MC függvénybe helyettesítve kaphatunk meg.
Vállalatok száma
Egy tökéletesen versenyző iparág egy vállalatának rövid távú költségfüggvénye . A határköltsége . A keresleti függvény Q=1825-5p. Ha minden vállalat fedezeti pontban termel (és a költségfüggvények megegyeznek), akkor hány vállalat van az iparágban?
Tudjuk, hogy p=140 (az előző feladat alapján), a keresleti függvény pedig Q=1825-5p, így kijön, hogy Q=1125 tehát az összes vállalat együtt ennyit termel. Az előző feladat alapjn tudjuk, hogy egy vállalat 9-et termel, így n=Q/q=1125/9=125 vállalat van.
Befektetések
Önnek 16 millió Ft-ért ajánlanak egy olyan ingatlant, amely évi 900 ezer Ft tiszta jövedelmet biztosít, és három év múlva 24 millió Ft-ért eladható. Megvásárolná-e az ingatlant, ha a piaci kamatláb 20%?
Megjegyzés: könnyű belezavarodni az "ezer ezer" típusú számokba.
Jelenérték: millió Ft
Kamatláb: r=0,2
Gondoljuk végig, mennyit kapunk az ingatlanért: minden évben 0,9 milliót, majd az utolsó évben 24,9 milliót. Számoljuk ki, mennyi pénzt kellett volna a bankba rakni, hogy pont ennyi pénzünk legyen. Ehhez a képlet módosítását használjuk.
Ez így összesen 15,784 millió, tehát ennyit érne most az a pénz, amit összesen kapnék érte. Ez azt jelenti, hogy a ház megvételén 0,215 milliót buknánk, tehát nem éri meg megvenni.
Termelési függvény
Egy vállalat termelési függvénye . A rövid távon rendelkezésre álló tőke K=4, egységnyi munka ára 10, egységnyi tőke 50. Mekkora összköltséggel állítható elő 80 egységnyi termék?
Mivel a feladatból ismerjük K értékét, egyszerűen behelyettesítünk: , ebből L=16.
Az összköltség . Innen már ismerünk minden változót, TC=360