„Jelek és jelfeldolgozás kvíz” változatai közötti eltérés

A VIK Wikiből
a Sortörések javítása
Kérdések: újak hozzáadása
53. sor: 53. sor:


==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t)]^2</math>. Jellemezze a rendszert!==
==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t)]^2</math>. Jellemezze a rendszert!==
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
{{Kvízkérdés|típus=több|válasz=1,2,4}}
{{Kvízkérdés|típus=több|válasz=1,2,4}}
#invariáns
#invariáns
61. sor: 60. sor:


==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t+3)]</math>. Jellemezze a rendszert!==
==Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: <math>y(t)=5[u(t+3)]</math>. Jellemezze a rendszert!==
Jelölje meg az összes tulajdonságot, melyet igaznak tart!
{{Kvízkérdés|típus=több|válasz=1,3,4}}
{{Kvízkérdés|típus=több|válasz=1,3,4}}
#invariáns
#invariáns
68. sor: 66. sor:
#gerjesztés-válasz stabil
#gerjesztés-válasz stabil


==Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat. Adja meg a rendszer állapotváltozós leírásának normálalakját!==
==Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat.==
[[Fájl:Jelek_20240424_ZH_jelfolyamhálózat.png|keret|keretnélküli|500x500px]]
[[Fájl:Jelek_20240424_ZH_jelfolyamhálózat.png|keret|keretnélküli|500x500px]]
Adja meg a rendszer állapotváltozós leírásának normálalakját!
{{Kvízkérdés|típus=egy|válasz=4}}
{{Kvízkérdés|típus=egy|válasz=4}}
#<math>\begin{cases}
#<math>\begin{cases}
87. sor: 88. sor:
y(t)=6x(t)
y(t)=6x(t)
\end{cases}</math>
\end{cases}</math>
Adja meg a rendszer átviteli karakerisztikáját normálalakban!*
{{Kvízkérdés|típus=egy|válasz=2}}
# <math>H(e^{j\vartheta})=\frac{2+1e^{j\vartheta}}{3e^{j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{12}{1+0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{12}{1-0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{6}{1-0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{6}{1+0,5e^{-j\vartheta}}</math>
# <math>H(e^{j\vartheta})=\frac{2+1e^{j\vartheta}}{6e^{j\vartheta}}</math>


==Egy diszkrét idejű rendszer ugrásválasza <math>g[k]=\varepsilon[k]2^k</math>. Adja meg a rendszer <math>h[k]</math> impulzusválaszát!==
==Egy diszkrét idejű rendszer ugrásválasza <math>g[k]=\varepsilon[k]2^k</math>. Adja meg a rendszer <math>h[k]</math> impulzusválaszát!==
141. sor: 152. sor:
#<math>\bar X=5e^{-j0,5}</math>
#<math>\bar X=5e^{-j0,5}</math>
#<math>\bar X=0,5e^{-j0,05}</math>
#<math>\bar X=0,5e^{-j0,05}</math>
== Egy DI rendszer gerjesztésének fazora a <math>\vartheta=\frac{\pi}{4}</math> körfrekvencián <math>\bar U=5e^{j0,4}</math>. A rendszer átviteli tényezője ugyanezen a körfrekvencián <math>\bar H=2e^{-j1,2}</math>. Határozza meg a rendszer válaszának időfüggvényét!* ==
{{Kvízkérdés|típus=egy|válasz=2}}
# <math>y[k]=10\cos(\frac{\pi}{4}k+0,8)</math>
# <math>y[k]=10\cos(\frac{\pi}{4}k-0,8)</math>
# <math>y[k]=10\cos(0,8k+\frac{\pi}{4})</math>
# <math>y[k]=5\cos(\frac{\pi}{4}k+0,4)</math>
# <math>y[k]=5\cos(\frac{\pi}{4}k+1,4)</math>
# <math>y[k]=5\cos(0,8k+\frac{\pi}{4})</math>
== Egy DI jel spektruma a <math>\vartheta=[0,\pi]</math> intervallumon <math>X(e^{j\vartheta})=\pi-\vartheta</math>. Határozza meg a jel sávszélességét, ha <math>\sigma=0,1</math>.* ==
{{Kvízkérdés|típus=egy|válasz=5}}
# <math>0,9</math>
# <math>0,1\pi</math>
# <math>0,1</math>
# <math>0,81\pi</math>
# <math>0,9\pi</math>
# <math>0,01\pi</math>
== Mely tulajdonság(ok) jellemző(ek) egy FIR típusú DI rendszerre?* ==
{{Kvízkérdés|típus=több|válasz=3}}
# Mindig konstans az amplitúdókarakterisztikája
# Impulzusválasza mindig monoton csökkenő
# Mindig gerjesztés-válasz stabil
# Mindig lineáris az amplitúdókarakterisztikája
== Egy periodikus DI jel periódushossza <math>L=4</math>. Egy periódusának mintái: <math>x[0]=-1,\ x[1]=1,\ x[2]=1,\ x[3]=1</math>. Adja meg a jel nulladik komplex Fourier-együtthatójának értékét, <math>X^C_0</math>-t, két tizedesjegy pontossággal!* ==
A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.
{{Kvízkérdés|típus=egy|válasz=2}}
# 0,25
# 0,5
# 1
# 1,25
# 2,5
== Mely tulajdonság(ok) jellemzik a torzításmentes jelátvitelt megvalósító rendszert?* ==
{{Kvízkérdés|típus=több|válasz=1,4,5}}
# Konstans futásidő-karakterisztika
# Lineáris amplitúdókarakterisztika
# Lineáris futásidő-karakterisztika
# Konstans amplitúdókarakterisztika
# Lineáris fáziskarakterisztika
== Egy <math>L=4</math> periódusidejű jel komplex Fourier-együtthatói: <math>X^C_0=1,\ X^C_1=2e^{j0,2},\ X^C_2=0</math>. Adja meg a jel ''mérnöki valós alakjának'' megfelelő időfüggvényét!* ==
{{Kvízkérdés|típus=egy|válasz=4}}
# <math>x[k]=1+2\cos(\frac{\pi}{2}k+0,2)</math>
# <math>x[k]=1+0,2\cos(\frac{\pi}{2}k+2)</math>
# <math>x[k]=2+4\cos(\frac{\pi}{2}k+0,2)</math>
# <math>x[k]=1+4\cos(\frac{\pi}{2}k+0,2)</math>
# <math>x[k]=2+4\cos(\frac{\pi}{2}k+0,4)</math>
== Egy folytonos idejű jel mintavételezése során a mintavételi körfrekvencia 8 krad/s. Határozza meg a folytonos idejű jel maximális sávszélességét, amelynek ezzel a mintavételezéssel az időfüggvénye helyreállítható (rekonstruálható)!* ==
A választ 1 tizedesjegy pontossággal, krad/s-ban adja meg! ''A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.''
{{Kvízkérdés|típus=egy|válasz=3}}
# 0.5
# 2
# 4
# 8
# 16
== Egy DI rendszer átviteli karakterisztikája <math>H(e^{j\vartheta})=\frac{e^{-j\vartheta}+e^{-j2\vartheta}}{1+e^{-j\vartheta}+e^{-j2\vartheta}}</math>. Adja meg a rendszer átviteli tényezőjét a <math>\vartheta=\frac{\pi}{2}</math> körfrekvencián!* ==
{{Kvízkérdés|típus=egy|válasz=3}}
# <math>\sqrt2e^{j\frac{\pi}{4}}</math>
# <math>2e^{j\frac{\pi}{4}}</math>
# <math>\sqrt2e^{-j\frac{\pi}{4}}</math>
# <math>2e^{-j\frac{\pi}{4}}</math>
# <math>4e^{j\frac{\pi}{4}}</math>
# <math>4e^{-j\frac{\pi}{4}}</math>
== Egy DI rendszer amplitúdókarakteriszikája az alábbi ábrán látható. Határozza meg, hogy milyen típusú szűrőt valósít meg a rendszer a toleranciaséma alapján, ha az áteresztő és a zárósáv között legalább 10 dB eltérésnek kell lennie!* ==
[[Fájl:Jelek vizsga amplitúdókarakterisztika.png|keret|keretnélküli|500x500px]]
{{Kvízkérdés|típus=egy|válasz=5}}
# Sávzáró
# Minimálfázisú
# Sáváteresztő
# Mindent áteresztő
# Felüláteresztő
# Aluláteresztő

A lap 2024. június 5., 22:40-kori változata

A csillaggal jelölt kérdések csak a vizsgán várhatóak.


Jelek és jelfeldolgozás kvíz
Statisztika
Átlagteljesítmény
-
Eddigi kérdések
0
Kapott pontok
0
Alapbeállított pontozás
(-)
-
Beállítások
Minden kérdés látszik
-
Véletlenszerű sorrend
-
-


Egy folytonos idejű, lineáris, invariáns rendszer impulzusválasza . Gerjesztés-válasz stabilis-e a rendszer?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Nem, mert az impulzusválaszban szerepel a .
  2. Igen, mert az impulzusválasz belépő.
  3. Igen, mert az impulzusválasz abszolút integrálható.
  4. Nem, mert az impulzusválasz nem abszolút integrálható.
  5. Igen, mert az impulzusválaszban szereplő és együtthatója azonos nagyságú és ellentétes előjelű.

Egy folytonos idejű, lineáris, invariáns rendszer impulzusválasza . Gerjesztés-válasz stabilis-e a rendszer?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Nem, mert az impulzusválaszban szerepel a .
  2. Igen, mert az impulzusválasz belépő.
  3. Igen, mert az impulzusválasz abszolút integrálható.
  4. Nem, mert az impulzusválasz nem abszolút integrálható.
  5. Igen, mert az impulzusválaszban szereplő és együtthatója azonos nagyságú és ellentétes előjelű.

Egy folytonos idejű rendszer impulzusválasza . Adja meg a rendszer ugrásválaszát!

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Nem létezik

Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: Adja meg a rendszer állapotváltozóinak közelítő számításához szolgáló előrelépő Euler-séma formuláját!

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

Adott egy elsőrendű, folytonos idejű lineáris invariáns rendszer állapotváltozós leírásának normálalakja: Adja meg a rendszer állapotváltozóinak közelítő számításához szolgáló előrelépő Euler-séma formuláját!

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: . Jellemezze a rendszert!

Típus: több. Válasz: 1,2,4. Pontozás: nincs megadva.

  1. invariáns
  2. kauzális
  3. lineáris
  4. gerjesztés-válasz stabil

Explicit gerjesztés-válasz kapcsolattal adott az alábbi rendszer: . Jellemezze a rendszert!

Típus: több. Válasz: 1,3,4. Pontozás: nincs megadva.

  1. invariáns
  2. kauzális
  3. lineáris
  4. gerjesztés-válasz stabil

Az alábbi ábrán látható egy folytonos idejű rendszert reprezentáló jelfolyamhálózat.

Adja meg a rendszer állapotváltozós leírásának normálalakját!


Típus: egy. Válasz: 4. Pontozás: nincs megadva.

Adja meg a rendszer átviteli karakerisztikáját normálalakban!*


Típus: egy. Válasz: 2. Pontozás: nincs megadva.


Egy diszkrét idejű rendszer ugrásválasza . Adja meg a rendszer impulzusválaszát!

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Nem létezik

Egy diszkrét idejű rendszer rendszeregyenlete . Adja meg a rendszer átviteli karakterisztikáját!

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Nem létezik

Egy diszkrét idejű jel időfüggénye a . Állapítsa meg a jel periódushosszát!

A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. 3
  2. 4
  3. 5
  4. 6

Egy diszkrét idejű jel időfüggénye a . Állapítsa meg a jel periódushosszát!

A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. 3
  2. 4
  3. 5
  4. 6

Egy diszkrét idejű, lineáris, invariáns rendszer ugrásválasza . Adja meg a rendszer válaszát az gerjesztésre!

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Az nem belépő, ezért nem létezik

Egy diszkrét idejű jel időfüggvénye . Adja meg a jel fazorát (komplex csúcsértékét)!

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

Egy diszkrét idejű jel időfüggvénye . Adja meg a jel fazorát (komplex csúcsértékét)!

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

Egy DI rendszer gerjesztésének fazora a körfrekvencián . A rendszer átviteli tényezője ugyanezen a körfrekvencián . Határozza meg a rendszer válaszának időfüggvényét!*

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

Egy DI jel spektruma a intervallumon . Határozza meg a jel sávszélességét, ha .*

Típus: egy. Válasz: 5. Pontozás: nincs megadva.

Mely tulajdonság(ok) jellemző(ek) egy FIR típusú DI rendszerre?*

Típus: több. Válasz: 3. Pontozás: nincs megadva.

  1. Mindig konstans az amplitúdókarakterisztikája
  2. Impulzusválasza mindig monoton csökkenő
  3. Mindig gerjesztés-válasz stabil
  4. Mindig lineáris az amplitúdókarakterisztikája

Egy periodikus DI jel periódushossza . Egy periódusának mintái: . Adja meg a jel nulladik komplex Fourier-együtthatójának értékét, -t, két tizedesjegy pontossággal!*

A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. 0,25
  2. 0,5
  3. 1
  4. 1,25
  5. 2,5

Mely tulajdonság(ok) jellemzik a torzításmentes jelátvitelt megvalósító rendszert?*

Típus: több. Válasz: 1,4,5. Pontozás: nincs megadva.

  1. Konstans futásidő-karakterisztika
  2. Lineáris amplitúdókarakterisztika
  3. Lineáris futásidő-karakterisztika
  4. Konstans amplitúdókarakterisztika
  5. Lineáris fáziskarakterisztika

Egy periódusidejű jel komplex Fourier-együtthatói: . Adja meg a jel mérnöki valós alakjának megfelelő időfüggvényét!*

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

Egy folytonos idejű jel mintavételezése során a mintavételi körfrekvencia 8 krad/s. Határozza meg a folytonos idejű jel maximális sávszélességét, amelynek ezzel a mintavételezéssel az időfüggvénye helyreállítható (rekonstruálható)!*

A választ 1 tizedesjegy pontossággal, krad/s-ban adja meg! A vizsgán nincsenek válaszlehetőségek, csak egy szövegmező.

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. 0.5
  2. 2
  3. 4
  4. 8
  5. 16

Egy DI rendszer átviteli karakterisztikája . Adja meg a rendszer átviteli tényezőjét a körfrekvencián!*

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

Egy DI rendszer amplitúdókarakteriszikája az alábbi ábrán látható. Határozza meg, hogy milyen típusú szűrőt valósít meg a rendszer a toleranciaséma alapján, ha az áteresztő és a zárósáv között legalább 10 dB eltérésnek kell lennie!*

Típus: egy. Válasz: 5. Pontozás: nincs megadva.

  1. Sávzáró
  2. Minimálfázisú
  3. Sáváteresztő
  4. Mindent áteresztő
  5. Felüláteresztő
  6. Aluláteresztő