„Záróvizsga kvíz - Algoritmusok” változatai közötti eltérés

A VIK Wikiből
a typo
249. sor: 249. sor:


== Tekintsük az alábbi három függvényt (itt a <math>log</math> függvény mindig kettes alapú logaritmust jelöl): (2022 jan) ==
== Tekintsük az alábbi három függvényt (itt a <math>log</math> függvény mindig kettes alapú logaritmust jelöl): (2022 jan) ==
<math>\begin{aligned}
<math>f(n)=2022 \cdot n^2 \cdot \log n+7 \cdot \sqrt{n}</math>
& f(n)=2022 \cdot n^2 \cdot \log n+7 \cdot \sqrt{n} \\
 
& g(n)=\log n+1000+n \cdot(\log n)^2 \\
<math>g(n)=\log n+1000+n \cdot(\log n)^2</math>
& h(n)=n \cdot \sqrt{n}+\frac{1}{1000} \cdot n^2-8
 
\end{aligned}</math>
<math>h(n)=n \cdot \sqrt{n}+\frac{1}{1000} \cdot n^2-8</math>


Az alábbiak közül melyik állítás igaz ezen három függvény nagyságrendjére?
Az alábbiak közül melyik állítás igaz ezen három függvény nagyságrendjére?

A lap 2023. december 11., 22:14-kori változata

ZVAlgo
Statisztika
Átlagteljesítmény
-
Eddigi kérdések
0
Kapott pontok
0
Alapbeállított pontozás
(-)
-
Beállítások
Minden kérdés látszik
-
Véletlenszerű sorrend
-
-


Tekintsük az alábbi két függvényt (itt a log függvény kettes alapú logaritmust jelöl): (2023 jun)

Az alábbiak közül melyik állítás igaz?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. , mert mindkét függvényre igaz, hogy
  2. , mert és
  3. , de az előző két indoklás egyike sem helyes

Egy bináris keresőfa preorder bejárása a csúcsokat sorrendben látogatja meg. (2023 jun)

Melyik igaz az alábbi állítások közül a keresőfára?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A 7 a 12 egyik részfájában van.
  2. A 8 a gyökérben van.
  3. A 10 a 2 egyik részfájában van.
  4. A 2 egy levélbe n van.

darab különböző csokiból hányféleképpen tudunk kiválasztani darabot úgy, hogy a három kedvenc csokink a kiválasztottak között legyen? (2023 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

Radix rendezéssel rendezzük az alábbi sorozatot: (a karakterek mindegyik pozícióban a 3-elemű ábécéből kerülnek ki). (2023 jun)

Melyik állítás igaz a rendezés folyamatára?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. soha nem előzi meg az szót.
  2. Van olyan fázis, amikor megelőzi az szót.
  3. és sorrendje pontosan kétszer változik.
  4. Van olyan fázis, amikor megelőzi az szót.

Kruskal algoritmusát futtatjuk az alábbi gráfon. (2023 jun)

Melyik állítás igaz az alábbiak közül?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Ha akkor az élet biztosan nem választja be az algoritmus a minimális feszítőfába.
  2. Az élet biztosan beválasztja az algoritmus a minimális feszítőfába, bármi is értéke.
  3. Az élet biztosan nem választja be az algoritmus a minimális feszítőfába, bármi is értéke.
  4. Az algoritmus biztosan beválaszt legalább egy 3 súlyú élet a minimális feszítőfába.

Az csúcsú irányítatlan gráfra igaz, hogy bárhogyan is sorolunk fel csupa különböző -beli csúcsokat, ahol a és párok közül legalább az egyik benne van élhalmazában. Melyik állítás igaz az alábbiak közül? (2023 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. komplementerében nincsen kör.
  2. -ben van kör.
  3. -ben nincsen méretű független ponthalmaz.
  4. komplementerében nincsen -as klikk.

Egy ország térképe egy élsúlyozott, irányítatlan csúcsú gráf szomszédossági mátrixával adott. A csomópontok a városok, az élek a városok között vezető közvetlen utak, egy él súlya a megfelelő útszakasz hosszát adja meg kilométerben. (2023 jun)

A városok közül néhányban van csak posta. Egy adott érték esetén azt szeretnénk eldönteni, hogy igaz-e, hogy bármelyik településről van kilométeren belül elérhető, postával rendelkező város (az eléréshez csak az úthálózatot használhatjuk). Az alábbi lehetőségek közül melyikkel lehet ezt eldönteni lépésben?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Felveszünk egy új csúcsot, ebből 0 súlyú élet vezetünk minden postás városhoz, majd szélességi bejárást (BFS) futtatunk az új csúcsból a legrövidebb utak megkeresésére.
  2. Minden csúcsból futtatunk egy szélességi bejárást (BFS) a legrövidebb utak megkeresésésére.
  3. Minden csúcsból lefuttatjuk Dijktsra algoritmusát a legrövidebb utak megkeresésére.
  4. Felveszünk egy új csúcsot, ebből 0 súlyú élet vezetünk minden postás városhoz, majd futtatjuk Dijkstra algoritmusát az új csúcsból a legrövidebb utak megkeresésére.

Eldöntési feladatok (2023 jun)

Az eldöntési feladatban egy irányítatlan gráfról azt szeretnénk eldönteni, hogy van-e -ben pontosan 4 élü kör. Az eldöntési feladatban egy irányítatlan gráfról és egy pozitív egész számról azt szeretnénk eldönteni, hogy van-e -ben pontosan élü kör. Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. és
  2. és
  3. de
  4. de

Az eldöntési problémáról azt tudjuk, hogy -ben van, az eldöntési problémáról pedig azt, hogy -teljes. (2023 jun)

Mi igaz az alábbiak közül, ha feltételezzük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. Minden olyan eldöntési probléma, ami Karp-redukálható -ra, az Karp-redukálható -re is.
  2. biztosan Karp-redukálható -re.
  3. Ha Karp-redukálható -ra, akkor nincsen -ben.
  4. Ha Karp-redukálható -re, akkor az probléma -teljes.

Adott egy egész számokat tartalmazó tömb, melyben nem szerepel 0. (2023 jun)

Az tömb alapján egy és egy tömböt töltünk ki a következőképpen: - ha akkor és . - ha akkor és

A további értékeket így számoljuk: - ha akkor és - ha akkor és

Melyik állítás igaz az alábbiak közül a kiszámolt és értékek jelentésére?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. megadja a legnagyobb összeget, amit valamelyik, legfeljebb egy negatív számot tartalmazó résztömbből ( kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
  2. megadja a legnagyobb összeget, amit valamelyik résztömbből kaphatunk úgy, ha a résztömb minden elemét összeadjuk.
  3. megadja az tömbben szereplö összes negatív szám összegét
  4. megadja az tömbben szereplö összes szám összegét


Pozitív egész számokat szeretnénk tárolni valami adatszerkezet segítségével úgy, hogy tárolt elem esetén tetszőleges egész számról lépésben meg tudjuk mondani, hogy igaz-e rá, hogy a tárolt számok között van, de sem , sem nincsen. (2022 jun)

Melyik adatszerkezettel valósítható ez meg?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. 2-3 fa
  2. rendezett lista
  3. nyílt címzésú hash
  4. (nem feltétlenül kiegyensúlyozott) bináris keresőfa

Az 1, 8, 10,12, 20, 27, 30 rendezett tömbben bináris kereséssel keressük a 30-at. Hány összehasonlítás után találjuk meg? (2022 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 2
  2. 1
  3. 7
  4. 3

Egy kezdetben üres bináris keresőfába szúrtunk be elemeket (törlés nem volt). Az alábbiak közül melyik beszúrási sorrend eredményezi az ábrán látható fát? (2022 jun)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.


Tekintsük azt a feladatot, ahol egy csúcsú irányított gráfról azt szeretnénk eldönteni, hogy van-e 100 olyan csúcsa, hogy a gráfból ezeket elhagyva a maradék gráf csupa izolált pontból áll. (2022 jun)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. A probléma -ben van, de nincs -ben.
  2. A probléma -teljes és nincs -ben.
  3. A probléma -ben van és -teljes.
  4. A probléma -ben és -ben is benne van.


A megadottak közül melyik egy topologikus sorrendje az ábrán látható gráfnak? (2022 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.


Egy -es táblázat mezőin akarunk eljutni a bal felső cellából az utolsó sorba (itt mindegy, hogy a soron belül melyik oszlopba érkezünk). (2022 jun)

A szabályok a következők:

  1. Az első oszlop első mezőjéről kell indulnunk és a végén az utolsó sor tetszőleges mezőjére kell érkeznünk.
  2. Egy lépésben vagy egy cellát mehetünk lefele (és maradunk ugyanabban az oszlopban) vagy egy cellát megyünk jobbra (és maradunk ugyanabban a sorban) vagy átlósan lépünk egyet lefele jobbra (azaz egy sort lefele és egy oszlopnyit jobbra).

Jelölje esetén) azt, hogy az -edik sor -edik oszlopában levő mezőbe hányféleképpen juthatok el a bal felső cellából. Inicializáljuk a kezdeti értékeket így: mivel az első sor minden cellájába egyféleképpen juthatunk, ezért minden esetén és hasonlóan, mivel az első oszlop minden cellájába is egy út vezet, ezért minden esetén. Melyik rekurziós képlet a helyes a többi érték meghatározására?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

Az előző feladat folytatása:

A teljesen kitöltött táblázat segítségével hogyan kaphatjuk meg azt, hogy hányféleképpen lehet eljutni a bal felső cellából a legalsó sorba?

Típus: egy. Válasz: 5. Pontozás: nincs megadva.

  1. adja meg ezt.
  2. adja meg ezt.
  3. adja meg ezt.
  4. adja meg ezt
  5. adja meg ezt.

A egyszerű, irányítatlan gráf élei súlyozottak. Tegyük fel, hogy az élek súlyai különbözőek és hogy van legalább három éle a gráfnak. (2022 jun)

Tekintsük a következő állításokat: A: minden minimális feszítőfája tartalmazza a legkisebb súlyú élt. B: minden minimális feszítőfája tartalmazza a második legkisebb súlyú élt. C: egyik minimális feszítőfája sem tartalmazza a legnagyobb súlyú élt. Melyik a helyes az alábbi lehetőségek közül?

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Csak az állítás igaz, a másik kettő nem
  2. Az , a és a állítás is igaz.
  3. Csak az és a állítás igaz, a nem.
  4. Csak az és a állítás igaz, a nem.

Legyen a Értelmezés sikertelen (formai hiba): {\displaystyle 2SZÍN} eldöntési probléma, azaz ahol egy egyszerü, irányítatlan gráfról azt szeretnénk eldönteni, hogy ki lehet-e színezni a csúcsait két színnel úgy, hogy azonos színú csúcsok közőtt ne menjen él. Az eldöntési problémában pedig azt kell eldöntenünk darab pozitív egész számról, hogy van-e ezeknek a számoknak egy olyan részhalmaza, hogy a részhalmazban levő számok összege megegyezik a részhalmazba be nem vett számok összegével. (2022 jun)

Mi igaz az alábbiak közül, ha feltételezzük, hogy  ?

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. nem Karp-redukálható -ra, de Karp-redukálható -re.
  2. Karp-redukálható -ra és is Karp-redukálható -re.
  3. sem Karp-redukálható -ra és sem Karp-redukálható -re.
  4. Karp-redukálható -ra, de nem Karp-redukálható -re.

Tekintsük azt a teljes páros gráfot, melynek és a két osztálya. Hány maximális (azaz tovább nem bővíthető) párosítás van ebben a gráfban? (Két párosítás különböző, ha nem pontosan ugyanazokból az élekből áll.) (2022 jun)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1.  !

Az tömböt rendezzük a szokásos (módosítás nélkül futtatott) öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jun)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

  1. 0
  2. 64
  3. 32

Az algoritmusról tudjuk, hogy lépésszáma a bemenet hosszának, -nek a függvényében . (2022 jun)

Melyik nem igaz az alábbiak közül?

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma kisebb, mint .
  2. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma nagyobb, mint .
  3. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma kisebb, mint .
  4. Minden pozitív számhoz lehet olyan hosszú bemenet, amelyiken lépésszáma nagyobb, mint .

Egy csupa különböző egész számot tartalmazó bináris keresőfában egy keresés során az alábbi értékeket látjuk (x értéke nem ismert): . Az alábbiak közül mi igaz x értékére? (2022 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. x lehet 1 is és 9 is
  2. x lehet 6 is és 9 is
  3. x lehet 1 is és 6 is
  4. x lehet 2 is és 12 is

Egy kezdetben üres bináris keresőfába beszúrtuk az egész számokat valamilyen sorrendben (a sorrend nem ismert). Mi igaz biztosan az alábbiak közül? (2022 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. Az 1 levélben van.
  2. A fának 7 szintje van.
  3. A legutoljára beszúrt érték levélben van.
  4. A középső érték, azaz a 64, a gyökérben van.

Egy irányítatlan nyolc csúcsú gráfon DFS-t (mélységi bejárást) futtatunk úgy, hogy ha döntési helyzetben vagyunk, akkor az ábécé szerinti sorrend szerint haladunk. A DFS fába az alábbi élek kerülnek be ebben a sorrendben: . Mi igaz a csúcs fokszámára az alábbiak közül? (2022 jan)

Típus: egy. Válasz: 3. Pontozás: nincs megadva.

  1. fokszáma lehet 1 vagy 2, és más nem lehet
  2. fokszáma lehet 1, 2, 3 vagy 4, és más nem lehet
  3. fokszáma lehet 1, 2 vagy 3, és más nem lehet
  4. fokszáma lehet 1, 2, 3, 4 vagy 5, és más nem lehet

Adott egy csúcsú teljes gráf, a csúcsok számozottak, az 1, 2,…, n számozású csúcsok pirosra vannak színezve, a többi csúcs színtelen. Hány olyan különböző Hamilton-út van a gráfban, amelyben az első n csúcs piros? (2022 jan)

Típus: egy. Válasz: 4. Pontozás: nincs megadva.

A tömböt rendezzük öszefésüléses rendezéssel. Hány összehasonlítás történik a rendezés teljes futása alatt? (2022 jan)

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. 12
  2. 7
  3. 4
  4. 8

Radix rendezéssel rendezünk 5 hosszú karaktersorozatokat, ahol a karakterek mindegyik pozícióban a 4-elemű ábécéből kerülnek ki. Mi igaz ekkor a radix rendezés során használt ládarendezésekre? (2022 jan)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.

  1. 1 ládarendezést használunk ládával.
  2. 5 ládarendezést használunk, mindegyik esetben 4 ládával.
  3. 4 ládarendezést használunk, mindegyik esetben 5 ládával.
  4. 1 ládarendezést használunk 20 ládával.

Tekintsük az alábbi három függvényt (itt a függvény mindig kettes alapú logaritmust jelöl): (2022 jan)

Az alábbiak közül melyik állítás igaz ezen három függvény nagyságrendjére?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. és
  2. és
  3. és
  4. és

Tekintsük azt az eldöntési feladatot, ahol egy irányított gráfról azt szeretnénk eldönteni, hogy van-e két olyan és csúcsa, hogy -ből van irányított út -be, de -ből nincsen irányított út -be (2022 jan)

Melyik állítás igaz az alábbiak közül, ha feltesszük, hogy  ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. A probléma -ben és -ben is benne van.
  2. A probléma -ben van, de nincs -ben.
  3. A probléma -teljes és nincs -ben.
  4. A probléma -ben van és -teljes.

Legyen az az eldöntési probléma, ahol egy irányítatlan páros gráfról és egy számról azt szeretnénk eldönteni, hogy van-e -ben élű párosítás és legyen az a kérdés, ahol egy irányítatlan gráfról és egy számról azt szeretnénk eldönteni, hogy van-e -ben pontból álló klikk (azaz teljes gráf). (2022 jan)

Mi igaz az alábbiak közül, ha feltételezzük, hogy  ?

Típus: egy. Válasz: 1. Pontozás: nincs megadva.

  1. Karp-redukálható -ra, de nem Karp-redukálható -re.
  2. nem Karp-redukálható -ra, de Karp-redukálható -re.
  3. Karp-redukálható -ra és is Karp-redukálható -re.
  4. sem Karp-redukálható -ra és sem Karp-redukálható -re.

A hátizsák feladatra tanult dinamikus programozást használó algoritmust futtatjuk -es hátizsák kapacitással. A táblázat -es sora az értékekkel így néz ki: (2022 jan)

X 0 1 2 3 4 5 6 7 8 9 10
7 0 0 7 7 8 12 12 12 12 20 20

Mi igaz a következő, -as sor értékeire az alábbiak közül, ha a 8. tárgy súlya , értéke pedig  ? ( jelentése: az első tárgyból hátizsák kapacitás mellett elérhető maximális érték.)

Típus: egy. Válasz: 2. Pontozás: nincs megadva.