„Űrkommunikáció - ZH kvíz” változatai közötti eltérés
A VIK Wikiből
Nincs szerkesztési összefoglaló |
Nincs szerkesztési összefoglaló |
||
28. sor: | 28. sor: | ||
# Lempel-Ziv kódolást (LZ77 vagy LZ78) alkalmazva nem szükséges a forrás feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete. | # Lempel-Ziv kódolást (LZ77 vagy LZ78) alkalmazva nem szükséges a forrás feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete. | ||
# Shannon-Fano kódolást forráskiterjesztés nélkül alkalmazva nem szükséges a forrás # feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete, csak a forrásszimbólumok elsőrendű eloszlásának ismerete. | # Shannon-Fano kódolást forráskiterjesztés nélkül alkalmazva nem szükséges a forrás # feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete, csak a forrásszimbólumok elsőrendű eloszlásának ismerete. | ||
== Források Entrópia kódolását Shannon algoritmusával végezve (Entropy Coding, Type II) == | |||
{{Kvízkérdés|típus=több|válasz=1,2,3,4}} | |||
# az algoritmus első lépéseként meghatározzuk a kódszavak hosszát. | |||
# az algoritmus második lépésére egy lehetséges lejárás az úgynevezett lexikográfiai módszer. | |||
# az algoritmus második lépésére egy lehetséges lejárás az úgynevezett kumulatív valószínűség módszere. | |||
# fix hosszú forrásszavakat változó hosszú kódszavakká kódolunk. | |||
== A bináris aritmetikai kód dekódolható, ha == | |||
{{Kvízkérdés|típus=több|válasz=1}} | |||
# a forrás szimbólumkészletét (a forrás-ABC-t) kiegészítjük egy megfelelően választott valószínűségű "STOP" szimbólummal, ami a kódolandó forrásszimbólum-sorozat végét jelzi. | |||
# a szimbólumok egy adott hosszúságú sorozatát kódoljuk mindig egy kódszóba. | |||
# azonos hosszúságú kódszavakat állítunk elő, azaz a szimbólumsorozat kódolását akkor hagyjuk abba, ha egy adott kettedestört-hosszat elértünk. | |||
# mindig két forrásszimbólumot kódolunk, mivel a kód bináris. | |||
== Egy diszkrét valószínűségi változó <math>X</math> esetén == | |||
{{Kvízkérdés|típus=több|válasz=3}} | |||
# az <math>X_i = 1</math> esemény információ tartama feltétlenül <math>I(x_i) = 1</math>. | |||
# az <math>x_i = 1</math> esemény információ tartama feltétlenül <math>I(x_i) = 0</math>. | |||
# a <math>p(x_i) = 1</math> valószínűségű esemény információ tartama feltétlenül <math>I(x_i) = 0</math>. | |||
# a <math>p(x_i) = 1</math> valószínűségű esemény információ tartama feltétlenül <math>I(x_i) = 1</math>. | |||
== Egy legalább k-ad rendben stacionárius, diszkrét forrás k darab szimbólumát <math>(X_1, X_2, ..., X_k)</math> tekintve, ha a forrás == | |||
{{Kvízkérdés|típus=több|válasz=1,3,4}} | |||
# memóriamentes (DMS), akkor a <math>H(X_1, X_2, ..., X_k)</math> együttes entrópia k növelésével szigorúan monoton nő. | |||
# memóriamentes (DMS), akkor a <math>H(X_k|X_1, X_2,....., X_{k-1})</math> feltételes entrópia k növelésével szigorúan monoton csökkenő. | |||
# memóriával rendelkezik, akkor a <math>H(X_k|X_1, X_2,..., X_{k-1})</math> feltételes entrópia k növelésével monoton csökkenő. | |||
# memóriával rendelkezik, akkor a <math>H(X_1, X_2, ..., X_k)</math> együttes entrópia kisebb, mint memóriamentes (DMS) esetben. | |||
== Két diszkrét valószínűségi változó, <math>X</math> és <math>Y</math> esetén == | |||
{{Kvízkérdés|típus=több|válasz=1}} | |||
# ha <math>p(x_i) < p(y_j)</math>, akkor <math>x_i</math> esemény információ tartama feltétlenül nagyobb, mint <math>y_j</math> eseményé. | |||
# ha <math>x_i < y_j</math>, akkor <math>x_i</math> esemény információ tartama feltétlenül kisebb, mint <math>y_j</math> eseményé. | |||
# ha <math>X</math> egyenletes eloszlású és <math>Y</math> ettől eltérő eloszlású, akkor <math>H(X) < H(Y)</math>. | |||
# az azonos értékű események <math>(x_i = y_j)</math> információ tartama felétlenül azonos. |
A lap 2023. június 6., 07:31-kori változata
Azonos eseménytér felett értelmezett két diszkrét valószínűségi változó, X és Y esetén a relatív entrópia (Kullback-Leibler távolság)
- csak akkor határozható meg ha X és Y eloszlása megegyezik
- D(P(X)) || P(Y)) a P(X) és P(Y) eloszlások “hasonlóságának mértéke
- D(P(X,Y) || P(Y,X)) = 0 bármely P(X) és P(Y) eloszlás esetén
- D(P(X,Y) || P(X)P(Y)) = 0, ha X és Y függetlenek
Egy stohasztikus folyamat erős stacionaritásának szükséges, de nem feltétlenül elégséges feltétele, hogy
- elsőrendű valószínűségi függvénye az időben állandó legyen.
- másodrendű valószínűségi függvénye a t = 5 szekundum időbeni eltolásra invariáns legyen.
- k-adrendű valószínűségi eloszlásfüggvénye bármely t időbeni eltolásra invariáns legyen.
- várható értéke időfüggetlen legyen.
A bináris aritmetikai kód
- a [0, 1) intervallumon a legnagyobb valószínüségű forrásszimbólumhoz a legkisebb részintervallumot rendeli.
- egy "STOP" szimbólummal végződő forrásszimbólum-sorozathoz a hozzá tartozó részintervallumba eső legrövidebb kettedes tört kettedes pont utáni bitjeit rendeli, mint kód.
- igényli az elsőrendű forráseloszlás a-priori ismeretét.
- a "STOP" Szimbólumon kívül további járulékos biteket (redundanciát) fűz a forrás bitjeihez.
Diszkrét, legalább gyenge értelemben (WSS) stacionárius, memóriával rendelkező forrás esetén
- Huffman kódolást forráskiterjesztéssel alkalmazva nem szükséges a forrás feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete, csak a forrásszimbólumok elsőrendű eloszlásának ismerete.
- Lempel-Ziv kódolást (LZ77 vagy LZ78) alkalmazva csak a forrásszimbólumok elsőrendű eloszlásának ismerete szükséges.
- Lempel-Ziv kódolást (LZ77 vagy LZ78) alkalmazva nem szükséges a forrás feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete.
- Shannon-Fano kódolást forráskiterjesztés nélkül alkalmazva nem szükséges a forrás # feltételes entrópiáinak (ezzel persze együttes eloszlásainak) ismerete, csak a forrásszimbólumok elsőrendű eloszlásának ismerete.
Források Entrópia kódolását Shannon algoritmusával végezve (Entropy Coding, Type II)
- az algoritmus első lépéseként meghatározzuk a kódszavak hosszát.
- az algoritmus második lépésére egy lehetséges lejárás az úgynevezett lexikográfiai módszer.
- az algoritmus második lépésére egy lehetséges lejárás az úgynevezett kumulatív valószínűség módszere.
- fix hosszú forrásszavakat változó hosszú kódszavakká kódolunk.
A bináris aritmetikai kód dekódolható, ha
- a forrás szimbólumkészletét (a forrás-ABC-t) kiegészítjük egy megfelelően választott valószínűségű "STOP" szimbólummal, ami a kódolandó forrásszimbólum-sorozat végét jelzi.
- a szimbólumok egy adott hosszúságú sorozatát kódoljuk mindig egy kódszóba.
- azonos hosszúságú kódszavakat állítunk elő, azaz a szimbólumsorozat kódolását akkor hagyjuk abba, ha egy adott kettedestört-hosszat elértünk.
- mindig két forrásszimbólumot kódolunk, mivel a kód bináris.
Egy diszkrét valószínűségi változó esetén
- az esemény információ tartama feltétlenül .
- az esemény információ tartama feltétlenül .
- a valószínűségű esemény információ tartama feltétlenül .
- a valószínűségű esemény információ tartama feltétlenül .
Egy legalább k-ad rendben stacionárius, diszkrét forrás k darab szimbólumát tekintve, ha a forrás
- memóriamentes (DMS), akkor a együttes entrópia k növelésével szigorúan monoton nő.
- memóriamentes (DMS), akkor a feltételes entrópia k növelésével szigorúan monoton csökkenő.
- memóriával rendelkezik, akkor a feltételes entrópia k növelésével monoton csökkenő.
- memóriával rendelkezik, akkor a együttes entrópia kisebb, mint memóriamentes (DMS) esetben.
Két diszkrét valószínűségi változó, és esetén
- ha , akkor esemény információ tartama feltétlenül nagyobb, mint eseményé.
- ha , akkor esemény információ tartama feltétlenül kisebb, mint eseményé.
- ha egyenletes eloszlású és ettől eltérő eloszlású, akkor .
- az azonos értékű események információ tartama felétlenül azonos.