„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés

Nincs szerkesztési összefoglaló
Nincs szerkesztési összefoglaló
1 796. sor: 1 796. sor:
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math>
}}
}}
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása ===
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét!
{{Rejtett
|mutatott='''Megoldás'''
|szöveg=
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak.
Tehát:
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math>
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math>


== Poynting-vektor ==
== Poynting-vektor ==