„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
Nincs szerkesztési összefoglaló |
Nincs szerkesztési összefoglaló |
||
1 796. sor: | 1 796. sor: | ||
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math> | <math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math> | ||
}} | }} | ||
=== 136. Feladat: Elektromágneses síkhullám elektromos térerősségéből mágneses térerősség számítása === | |||
Egy elliptikusan polarizált levegőben terjedő síkhullám elektromos térerőssége a következő:<math>E = E0*(ex*cos(wt)+3*ey*cos(wt-pi/6))</math>.Adja meg a mágneses térerősség x irányú komponensét! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
Mivel síkhullám ezért z irányú komponense nincs a térerősségeknek. Az elektromos térerősséget Z0-val osztva (ami a levegőben terjedő hullám hullámimpedanciája) megkapjuk a mágneses térerősséget. De térbe a két térerősség merőleges egymásra, ezért Ex-ből Hy, valamint Ey-ból Hx lesz. Z irányú komponense nincs a síkhullámnak. | |||
Tehát: | |||
<math>H = (E0/Z0)*(ey*cos(wt)+3*ex*cos(wt-pi/6))</math> | |||
<math>Hx = (E0/Z0)*(3*ex*cos(wt-pi/6))</math> | |||
== Poynting-vektor == | == Poynting-vektor == |