„Hírközléselmélet I. (Doktori)” változatai közötti eltérés
Új oldal, tartalma: „{{Tantárgy | név = Hírközléselmélet I. | tárgykód = VIHID243 | szak = villany Doktori | kredit = 4 | félév = 1 | kereszt = | tanszék = HIT | jelenlét = |…” |
Nincs szerkesztési összefoglaló |
||
18. sor: | 18. sor: | ||
| tárgyhonlap = https://www.hit.bme.hu/adatlap/tantargy/args/BMEVIHID243 | | tárgyhonlap = https://www.hit.bme.hu/adatlap/tantargy/args/BMEVIHID243 | ||
}} | }} | ||
==Tárgytematika== | |||
*1. hét | |||
A modulált jelek általános leírása. A modulált jelek vektortérbeli leírása. Az | |||
Általánosított Fourier-sorfejtés, a Gram–Schmidt-ortogonalizálás. A fehér Gauss-zaj leírása a vektortérben. A fehér Gauss-zaj autokorrelációs függvénye. A zajvektor együttes valószínűségi sűrűségfüggvénye. | |||
*2. hét | |||
Példák a modulált jelek vektortérbeli leírására. QPSK jel, FSK jel, néhány speciális eset elemzése (MSK, FFSK). Az MSK jel további elemzése (a nem folytonos fázisú MSK jel és a folytonos fázisú MSK jel fázor diagramja és fázis fája). Példa egy MSK típusú alapsávi modem működési paramétereire. A folytonos fázisú rendszer előnyei. | |||
*3. hét | |||
Az optimális koherens vevő struktúrája és hibaaránya fehér Gauss-zajos csatornában. Az optimális demodulálási szabály: kritérium a hibavalószínűség minimalizálása. A Bayes-döntés elméleti alapjai, a döntési tartományok fogalma fehér Gauss-zajos csatorna esetén és azok számítási módja. | |||
*4. hét | |||
Példák a döntési tartományok kiszámítására (QPSK típusú jelek (N = 2, M = 4) azonos energiákkal, de különböző a priori valószínűségekkel, QPSK típusú jelek (N = 2,M = 4) azonos energiákkal és azonos a priori valószínűségekkel). Az optimális koherens vevő felépítése. A struktúra alternatív változatai. | |||
*5. hét | |||
Az optimális koherens vevő hibavalószínűségeinek meghatározása. Az uniós korlát fogalma, a páronkénti hibavalószínűség fogalma. Q függvény argumentumának elemzése és a függvény tulajdonságainak a vizsgálata, közelítő számítások, aszimptotikus viselkedés. | |||
*6. hét | |||
Példák a hibavalószínűség számítására (BPSK jel, QPSK jel, MSK jel). A hibaarány közelítő számítása, a minimális euklideszi távolság szerepe a rendszerek hibaarányának meghatározásában. A Q(x) függvény további tulajdonságai. | |||
*7. hét | |||
A koherens modulációs rendszerek általános jellemzése. Példák a koherens modulációs rendszerek általános jellemzésére (modulációs rendszerek általános elemi jelekkel, folytonos fázisú MSK moduláció, az Ungerboeck-kód 4PSK esetben, a nyolc belső állapotú rendszer távolságszámítása Ungerboeck-kód esetében). | |||
*8. hét | |||
Az optimális nem koherens vevő struktúrája és hibaaránya. A nem koherens jelek jeltérbeli ábrázolása. Az optimális vételhez, azaz a Bayes-döntéshez a szükséges valószínűségi sűrűségfüggvények származtatása. Az elégséges statisztika elvének az alkalmazása. A nem koherens vételhez szükséges döntési paraméterek meghatározása. | |||
*9. hét | |||
Optimális nem koherens vevő struktúrák (alapsávi kvadratúra korrelátoros vevő, alapsávi nem koherens illesztett szűrős vevő, vivősávi nem koherens illesztett szűrős vevő, egyszerűsített vivősávi detektor). A nem koherens optimális vevők működésének illusztratív összehasonlítása (a kvadratúra korrelációs detektor jelei, a kvadratúra korrelációs detektor és az alapsávi nem koherens illesztett szűrős detektor kimenő jeleinek összehasonlítása, a vivősávi nem koherens illesztett szűrős detektor kimenő jeleinek illusztrálása). | |||
*10. hét | |||
A nem koherens rendszerek hibavalószínűsége. Optimális döntés a Rice- és Rayleigh-eloszlások alapján. Példa a nem koherens rendszerek hibaarányának számítására. A koherens és nem koherens átviteli rendszerek összehasonlítása | |||
(a koherens csatorna, és nem koherens csatorna aszimptotikus tulajdonságai). | |||
*11. hét | |||
A vektortér kiterjesztése a sávhatárolt jelekre. A négyzetesen integrálható függvények L2 tere. A jeltér általános definíciója. Az alapsávi sávkorlátozott jelek leírása a jeltérben. Az áteresztő sávi sávkorlátozott jelek leírása a jeltérben. A fehér Gauss-zaj leírása az általános jeltérben. Az áteresztő sávi sávhatárolt jelek leírása a komplex számok terében. Az ortogonális PAM és QAM modulációk . A kódolatlan rendszerek teljesítőképessége a Shannon-kapacitáshoz viszonyítva. Az M-PAM és az (MxM)-QAM teljesítőképessége. | |||
*12. hét | |||
Kis jelterek teljesítőképessége. Jelkonstellációk fehér Gauss-zajos csatorna esetén. A teljesítőképesség vizsgálata a teljesítménykorlátozott tartományban. A teljesítőképesség vizsgálata a sávkorlátozott tartományban. Bevezetés a bináris kódok világába. Bináris jelkonstellációk. A bináris lineáris blokk kódok, mint bináris vektorterek. A lineáris blokk kódok az euklideszi térben. | |||
*13. hét | |||
Reed-Muller kódok. A bináris blokk kódok dekódolása. A modulált jelek spektrális vizsgálata. A ciklostacionárius jelek tulajdonságai. A véletlen fázisú szinuszos jel teljesítménysűrűség-függvénye. Az alapsávi PAM jelek teljesítménysűrűség-függvénye. Illusztratív példák a PAM jelek spektrális analízisére. | |||
*14. hét | |||
Az általános optimális PAM rendszer vizsgálata. Részleges válaszfüggvényű PAM típusú rendszerek. Példák a részleges válaszfüggvény rendszerek spektrális vizsgálatára. Általános modulációs rendszer vizsgálata. A folytonos fázisú FM modulált jelek spektruma. |
A lap 2017. május 30., 18:08-kori változata
Tárgytematika
- 1. hét
A modulált jelek általános leírása. A modulált jelek vektortérbeli leírása. Az Általánosított Fourier-sorfejtés, a Gram–Schmidt-ortogonalizálás. A fehér Gauss-zaj leírása a vektortérben. A fehér Gauss-zaj autokorrelációs függvénye. A zajvektor együttes valószínűségi sűrűségfüggvénye.
- 2. hét
Példák a modulált jelek vektortérbeli leírására. QPSK jel, FSK jel, néhány speciális eset elemzése (MSK, FFSK). Az MSK jel további elemzése (a nem folytonos fázisú MSK jel és a folytonos fázisú MSK jel fázor diagramja és fázis fája). Példa egy MSK típusú alapsávi modem működési paramétereire. A folytonos fázisú rendszer előnyei.
- 3. hét
Az optimális koherens vevő struktúrája és hibaaránya fehér Gauss-zajos csatornában. Az optimális demodulálási szabály: kritérium a hibavalószínűség minimalizálása. A Bayes-döntés elméleti alapjai, a döntési tartományok fogalma fehér Gauss-zajos csatorna esetén és azok számítási módja.
- 4. hét
Példák a döntési tartományok kiszámítására (QPSK típusú jelek (N = 2, M = 4) azonos energiákkal, de különböző a priori valószínűségekkel, QPSK típusú jelek (N = 2,M = 4) azonos energiákkal és azonos a priori valószínűségekkel). Az optimális koherens vevő felépítése. A struktúra alternatív változatai.
- 5. hét
Az optimális koherens vevő hibavalószínűségeinek meghatározása. Az uniós korlát fogalma, a páronkénti hibavalószínűség fogalma. Q függvény argumentumának elemzése és a függvény tulajdonságainak a vizsgálata, közelítő számítások, aszimptotikus viselkedés.
- 6. hét
Példák a hibavalószínűség számítására (BPSK jel, QPSK jel, MSK jel). A hibaarány közelítő számítása, a minimális euklideszi távolság szerepe a rendszerek hibaarányának meghatározásában. A Q(x) függvény további tulajdonságai.
- 7. hét
A koherens modulációs rendszerek általános jellemzése. Példák a koherens modulációs rendszerek általános jellemzésére (modulációs rendszerek általános elemi jelekkel, folytonos fázisú MSK moduláció, az Ungerboeck-kód 4PSK esetben, a nyolc belső állapotú rendszer távolságszámítása Ungerboeck-kód esetében).
- 8. hét
Az optimális nem koherens vevő struktúrája és hibaaránya. A nem koherens jelek jeltérbeli ábrázolása. Az optimális vételhez, azaz a Bayes-döntéshez a szükséges valószínűségi sűrűségfüggvények származtatása. Az elégséges statisztika elvének az alkalmazása. A nem koherens vételhez szükséges döntési paraméterek meghatározása.
- 9. hét
Optimális nem koherens vevő struktúrák (alapsávi kvadratúra korrelátoros vevő, alapsávi nem koherens illesztett szűrős vevő, vivősávi nem koherens illesztett szűrős vevő, egyszerűsített vivősávi detektor). A nem koherens optimális vevők működésének illusztratív összehasonlítása (a kvadratúra korrelációs detektor jelei, a kvadratúra korrelációs detektor és az alapsávi nem koherens illesztett szűrős detektor kimenő jeleinek összehasonlítása, a vivősávi nem koherens illesztett szűrős detektor kimenő jeleinek illusztrálása).
- 10. hét
A nem koherens rendszerek hibavalószínűsége. Optimális döntés a Rice- és Rayleigh-eloszlások alapján. Példa a nem koherens rendszerek hibaarányának számítására. A koherens és nem koherens átviteli rendszerek összehasonlítása (a koherens csatorna, és nem koherens csatorna aszimptotikus tulajdonságai).
- 11. hét
A vektortér kiterjesztése a sávhatárolt jelekre. A négyzetesen integrálható függvények L2 tere. A jeltér általános definíciója. Az alapsávi sávkorlátozott jelek leírása a jeltérben. Az áteresztő sávi sávkorlátozott jelek leírása a jeltérben. A fehér Gauss-zaj leírása az általános jeltérben. Az áteresztő sávi sávhatárolt jelek leírása a komplex számok terében. Az ortogonális PAM és QAM modulációk . A kódolatlan rendszerek teljesítőképessége a Shannon-kapacitáshoz viszonyítva. Az M-PAM és az (MxM)-QAM teljesítőképessége.
- 12. hét
Kis jelterek teljesítőképessége. Jelkonstellációk fehér Gauss-zajos csatorna esetén. A teljesítőképesség vizsgálata a teljesítménykorlátozott tartományban. A teljesítőképesség vizsgálata a sávkorlátozott tartományban. Bevezetés a bináris kódok világába. Bináris jelkonstellációk. A bináris lineáris blokk kódok, mint bináris vektorterek. A lineáris blokk kódok az euklideszi térben.
- 13. hét
Reed-Muller kódok. A bináris blokk kódok dekódolása. A modulált jelek spektrális vizsgálata. A ciklostacionárius jelek tulajdonságai. A véletlen fázisú szinuszos jel teljesítménysűrűség-függvénye. Az alapsávi PAM jelek teljesítménysűrűség-függvénye. Illusztratív példák a PAM jelek spektrális analízisére.
- 14. hét
Az általános optimális PAM rendszer vizsgálata. Részleges válaszfüggvényű PAM típusú rendszerek. Példák a részleges válaszfüggvény rendszerek spektrális vizsgálatára. Általános modulációs rendszer vizsgálata. A folytonos fázisú FM modulált jelek spektruma.