„Analízis (MSc) típusfeladatok” változatai közötti eltérés

A VIK Wikiből
Csala Tamás (vitalap | szerkesztései)
aNincs szerkesztési összefoglaló
109. sor: 109. sor:
|szöveg=
|szöveg=
* Számoljuk ki <math>\mathcal{L}'(f)</math>-et!
* Számoljuk ki <math>\mathcal{L}'(f)</math>-et!
<math>\mathcal{L}'(f) = s\mathcal{L}(f) + \lim_{x \to 0+}f(x)</math>
<math>\mathcal{L}'(f) = s\mathcal{L}(f) - \lim_{x \to 0+}f(x)</math>
* Vegyük ennek az egyenletnek a végtelenben vett határértékét:
* Vegyük ennek az egyenletnek a végtelenben vett határértékét:
** Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: <math>lim_{s \to \infty}\mathcal{L}'(f)=0</math>
** Egy Laplace trafó, és annak bármelyik deriváltja nullázhoz tart a végtelenben: <math>lim_{s \to \infty}\mathcal{L}'(f)=0</math>
** <math>lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0</math>
** <math>lim_{s \to \infty}s\mathcal{L}(f) = lim_{s \to \infty}\frac{s(s^2-3s+1)}{5s^4-4s^3+8} = 0</math>
* Tehát:
* Tehát:
<math>0 = 0 + f(0+)</math>
<math>0 = 0 - f(0+)</math>
* Amiből:
* Amiből:
<math>f(0+) = 0</math>
<math>f(0+) = 0</math>
* Csináljuk meg ugyanezt <math>\mathcal{L}''(f)</math>-re!
* Csináljuk meg ugyanezt <math>\mathcal{L}''(f)</math>-re!
<math>\mathcal{L}''(f) = s^2\mathcal{L}(f) + sf(0+) + f'(0+)</math>
<math>\mathcal{L}''(f) = s^2\mathcal{L}(f) - sf(0+) - f'(0+)</math>
* Vagyis:
* Vagyis:
<math>0 = \frac{1}{5} + 0 + f'(0+)</math>
<math>0 = \frac{1}{5} - 0 - f'(0+)</math>
* Amiből:
* Amiből:
<math>f'(0+) = -\frac{1}{5}</math>
<math>f'(0+) = \frac{1}{5}</math>
* Végül csináljuk meg ugyanezt <math>\mathcal{L}'''(f)</math>-re!
* Végül csináljuk meg ugyanezt <math>\mathcal{L}'''(f)</math>-re!
<math>\mathcal{L}'''(f) = s^3\mathcal{L}(f) + s^2f(0+) + sf'(0+) + f''(0+)</math>
<math>\mathcal{L}'''(f) = s^3\mathcal{L}(f) - s^2f(0+) - sf'(0+) - f''(0+)</math>
* Itt a határérték picit bonyolultabb:
* Itt a határérték picit bonyolultabb:
<math>0 = lim_{s \to \infty}(\frac{s}{5} + 0 - \frac{s}{5} + f''(0+))</math>
<math>0 = lim_{s \to \infty}(\frac{s}{5} - 0 - \frac{s}{5} - f''(0+))</math>
* Amiből:
* Amiből:
<math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math>
<math>lim_{s \to \infty}(f''(0+)) = f''(0+) = 0</math>

A lap 2016. június 1., 19:51-kori változata

Az Analízis I. (MSc) tárgyban a ZH-kon és vizsgákon tipikusan előforduló számolós feladatok és megoldásaik. Emelett még az elméletet is érdemes átnézni, a számonkérés 10-20%-a elmélet szokott lenni.

Integrál trafók témakör

Laplace trafó diff-egyenlet

1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

x˙(t)=2y(t)x(t)+1

y˙(t)=3y(t)2x(t)

x(0)=0,y(0)=1

Megoldás:

2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

x¨(t)=2x(t)3y(t)

y¨(t)=x(t)2y(t)

x(0)=x˙(0)=0,y(0)=0,y˙(0)=1

Megoldás:

3) [2016ZH1] Transzformáljuk elsőrendűvé a y+xy=x differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!

Megoldás:

Laplace trafó szabályok alkalmazása

1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:

limx0+f(x)=?,limx0+f(x)=?,ha(f)=s23s+15s44s3+8

Megoldás:

Fourier diff-egyenlet

1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével! y(x)4y(x)=8

Megoldás:

2) [2016ZH1] Transzformáljuk elsőrendűvé a y+xy=x differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!

Megoldás:

Fourier trafó szabályok alkalmazása

1) [2015ZH1] Számítsuk ki az f(x)=3xexH(x) Fourier transzformáltját, ha tudjuk, hogy (exH(x))=12π11+iy

Megoldás:

Disztribúciók

1) [2015ZH1] Adjuk meg δ és δ lineáris kombinációjaként az e3x2δ(x) disztribúciót!

Megoldás:

2) [2016ZH1] Számítsuk ki a T=ex2 reguláris disztribúcuó és a δ disztribúció konvolúciójának hatását a ψ(x)=x2 függvényre: (T*δ)x2=?

Megoldás:


3) [2016ZH1] Mi az (x3)f=0 disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)

Megoldás:


4) [2016ZH1] Adjuk meg az e3xδ(x2) disztribúciót a δ eltolt deriváltjainak lineáris kombinációjaként!

Megoldás:

5) [2016PZH] Legyen u az f(x)=x3 által generált reguláris disztribúció, ψ(x)=ex2. Számítsuk ki (σ2τ3δ*u)ψ-t!

Megoldás:

Wavelet trafók

Megjegyzés: a kitevőbe írt törtek (pl: ex22) sok böngészőben hibásan jelennek meg, ezért ezekben az esetekben törtek helyett osztás jelet fogok használni.


1) [2015ZH1] Legyen ψ(x)=(1x2)ex2/2, a mexikói kalap wavelet.

a) Legyen f(x)=e|x|. (Wψfa(b))=?

b) Legyen g(x)=x2. Tudjuk, hogy Rex2/2dx=2π.Wψga(b)=?

Megoldás:

2) [2016ZH1] A Poisson wavelet a következő: ψn(x)=H(x)xnn!xn1ex

a) Mutassuk meg, hogy ψ(x)=(xnn!ex), ha x0

b) Mutassuk meg, hogy Rψn(x)dx=0

c) Cψn=?

Megoldás:

3) [2016PZH] Legyen ψ(x)=xe|x|,f(x)=ex2/2. Adjuk meg f ψ által generált wavelet transzformáltjának Fourier transzformáltját!

Megoldás:

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

2ut2=42ux2

u(0,t)=u(3,t)=0,u(x,0)=sin4π3x,ut(x,0)=2sinπ3x

Megoldás:


2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

ut=92ux2

u(x,0)=12cos3π5x,ux(0,t)=ux(5,t)=0

Megoldás:

Parcdiff egyenletek (véges differenciák)

1) [2015ZH2] Véges differenciák segítségével, h=12 felosztás mellett adjuk meg az u1,2 értékét, ha

2ux2=2ut2

u(0,t)=3,u(3,t)=0,u(x,0)=3x,ut(x,0)=0

Megoldás:

2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha x[0,5],t0, az x irányú távolság, h = 1. Mennyi lesz u(2,118)?

ut=92ux2

u(x,0)=12cos3π5x,ux(0,t)=ux(5,t)=0

Megoldás:

Jordan normál-forma

1) [2016ZH2] Adjuk meg az x=Bx+b egyenlet megoldását, ha B=16[312042011],b=[101].

Megoldás:

Nem lineáris egyenletek numerikus megoldása

1) [2015ZH2] Keressük a 1+coshx2=x egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.

a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?

b) Használható-e a [4, 5] intervallumon az iteráció?

Megoldás:

2) [2016ZH2] Tekintsük az ex2=x egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?


Megoldás:

3) [2016PZH] Az arsh2x=x egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?

Megoldás:

Lagrange multiplikátor módszer

1) [2015ZH2] Keressük meg az f(x,y,z)=xy2z3(x,y,z>0) szélsőértékét az g(x,y,z)=x+2y+3z6=0 feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!

Megoldás:

2) [2016ZH2] Hol lehet feltételes szélsőértéke a 3x2+y2+z2xy függvénynek az x2+y2+z2=1 feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)

Megoldás:

3) [2016PZH] Hol lehet feltételes szélsőértéke a x2+y2+z22xy2xz függvénynek az x2+y2+z2=1 feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!

Megoldás:

Variáció számítás

1) [2015ZH2] Keressük meg az I(y) funkcionálhoz tartozó extremális y függvényt!

I(y)=12y'2+x32xydx

y(1)=16,y(2)=53

Megoldás:

2) [2015ZH2] Keressük meg az I(y) funkcionálhoz tartozó extremális y függvényt!

I(y)=12y'3+x32xydx

y(1)=16,y(2)=53

Megoldás: