„Analízis (MSc) típusfeladatok” változatai közötti eltérés
3. sor: | 3. sor: | ||
== Laplace trafó diff-egyenlet == | == Laplace trafó diff-egyenlet == | ||
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha | '''1)''' <small>[2015ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha | ||
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math> | <math>\dot{x}(t) = 2y(t) - x(t) + 1</math> | ||
10. sor: | 11. sor: | ||
<math>x(0) = 0,~y(0) = 1</math> | <math>x(0) = 0,~y(0) = 1</math> | ||
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha | '''Megoldás:''' | ||
* Vegyük mindkét egyenlet Laplace trafóját (<math>X(s) = L(x),~ Y(s) = L(y)</math>): | |||
<math>sX - x(0) = 2Y - X + \frac{1}{s}</math> | |||
<math>sY - y(0) = 3Y - 2X</math> | |||
* Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve: | |||
<math>(s+1)X + (-2)Y = \frac{1}{s}</math> | |||
<math>(2)X + (s-3)Y = 1</math> | |||
* Mátrixos alakra hozva: | |||
<math>\begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}\frac{1}{s} \\ 1\end{bmatrix}</math> | |||
* Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni): | |||
<math>X = \frac{det\left(\begin{bmatrix}\frac{1}{s} & -2 \\ 1 & s-3\end{bmatrix}\right)}{det\left(\begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix}\right)} = \frac{\frac{s-3}{s} + 2}{(s+1)(s-3)+4} = \frac{3 (s-1)}{s(s^2 - 2s + 1)} = \frac{3 (s-1)}{s(s-1)^2} = \frac{3}{s(s-1)}</math> | |||
* Az inverz laplacehoz bontsuk parciális törtekre: | |||
<math>\frac{A}{s} + \frac{B}{s-1} = \frac{A(s-1) + Bs}{s(s-1)} = \frac{3}{s(s-1)}</math> | |||
* Együtthatókat összehasonlítva: | |||
<math> A + B = 0, -A = 3, \to B = 3</math> | |||
* Vagyis <math>X(s) = \frac{-3}{s} + \frac{3}{s-1}</math> | |||
* Tehát a táblázat alapján <math>x(t) = -3 + 3e^t</math> | |||
<hr> | |||
'''2)''' <small>[2016ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha | |||
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math> | <math>\ddot{x}(t) = 2x(t) - 3y(t)</math> | ||
17. sor: | 53. sor: | ||
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math> | <math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math> | ||
3) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)! | <hr> | ||
'''3)''' <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)! | |||
== Laplace trafó szabályok alkalmazása == | == Laplace trafó szabályok alkalmazása == |
A lap 2016. május 25., 00:51-kori változata
Integrál trafók témakör
Laplace trafó diff-egyenlet
1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
Megoldás:
- Vegyük mindkét egyenlet Laplace trafóját ():
- Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
- Mátrixos alakra hozva:
- Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
- Az inverz laplacehoz bontsuk parciális törtekre:
- Együtthatókat összehasonlítva:
- Vagyis
- Tehát a táblázat alapján
2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
Laplace trafó szabályok alkalmazása
1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:
,
ha f Laplace transzformáltja,
Fourier diff-egyenlet
1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!
2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!
Fourier trafó szabályok alkalmazása
1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy
Disztribúciók
1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!
2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:
3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)
4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!
5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!
Wavelet trafók
1) [2015ZH1] Legyen , a mexikói kalap wavelet.
a) Legyen .
b) Legyen . Tudjuk, hogy .
2) [2016ZH1] A Poisson wavelet a következő:
a) Mutassuk meg, hogy , ha
b) Mutassuk meg, hogy
c)
3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!
Numerikus módszerek témakör
Parcdiff egyenletek (Fourier)
1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!
Parcdiff egyenletek (véges differenciák)
1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha
2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?
Jordan normál-forma
1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha
Nem lineáris egyenletek numerikus megoldása
1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.
a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?
b) Használható-e a [4, 5] intervallumon az iteráció?
2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?
3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?
Lagrange multiplikátor módszer
1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!
2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)
3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!
Variáció számítás
1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!
2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!