„Analízis (MSc) típusfeladatok” változatai közötti eltérés

A VIK Wikiből
Csala Tamás (vitalap | szerkesztései)
Csala Tamás (vitalap | szerkesztései)
3. sor: 3. sor:
== Laplace trafó diff-egyenlet ==
== Laplace trafó diff-egyenlet ==


1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
'''1)''' <small>[2015ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
 
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math>
<math>\dot{x}(t) = 2y(t) - x(t) + 1</math>


10. sor: 11. sor:
<math>x(0) = 0,~y(0) = 1</math>
<math>x(0) = 0,~y(0) = 1</math>


2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
'''Megoldás:'''
 
* Vegyük mindkét egyenlet Laplace trafóját (<math>X(s) = L(x),~ Y(s) = L(y)</math>):
 
<math>sX - x(0) = 2Y - X + \frac{1}{s}</math>
 
<math>sY - y(0) = 3Y - 2X</math>
 
* Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:
 
<math>(s+1)X + (-2)Y = \frac{1}{s}</math>
 
<math>(2)X + (s-3)Y = 1</math>
 
* Mátrixos alakra hozva:
 
<math>\begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix} \begin{bmatrix}x \\ y\end{bmatrix} = \begin{bmatrix}\frac{1}{s} \\ 1\end{bmatrix}</math>
 
* Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):
 
<math>X = \frac{det\left(\begin{bmatrix}\frac{1}{s} & -2 \\ 1 & s-3\end{bmatrix}\right)}{det\left(\begin{bmatrix}s+1 & -2 \\ 2 & s-3\end{bmatrix}\right)} = \frac{\frac{s-3}{s} + 2}{(s+1)(s-3)+4} = \frac{3 (s-1)}{s(s^2 - 2s + 1)} = \frac{3 (s-1)}{s(s-1)^2} = \frac{3}{s(s-1)}</math>
 
* Az inverz laplacehoz bontsuk parciális törtekre:
 
<math>\frac{A}{s} + \frac{B}{s-1} = \frac{A(s-1) + Bs}{s(s-1)} = \frac{3}{s(s-1)}</math>
 
* Együtthatókat összehasonlítva:
<math> A + B = 0, -A = 3, \to B = 3</math>
 
* Vagyis <math>X(s) = \frac{-3}{s} + \frac{3}{s-1}</math>
 
* Tehát a táblázat alapján <math>x(t) = -3 + 3e^t</math>
 
<hr>
'''2)''' <small>[2016ZH1]</small> Laplace transzformáció segítségével számítsuk ki x(t)-t, ha
 
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math>
<math>\ddot{x}(t) = 2x(t) - 3y(t)</math>


17. sor: 53. sor:
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math>
<math>x(0) = \dot{x}(0) = 0,~y(0) = 0,~\dot{y}(0) = 1</math>


3) [2016ZH1] Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!
<hr>
'''3)''' <small>[2016ZH1]</small> Transzformáljuk elsőrendűvé a <math>y'' + xy' = x</math> differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!


== Laplace trafó szabályok alkalmazása ==
== Laplace trafó szabályok alkalmazása ==

A lap 2016. május 25., 00:51-kori változata

Integrál trafók témakör

Laplace trafó diff-egyenlet

1) [2015ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha

Megoldás:

  • Vegyük mindkét egyenlet Laplace trafóját ():

  • Az egyenleteket átrendezve, és x(0), y(0)-t behelyettesítve:

  • Mátrixos alakra hozva:

  • Megoldás X-re (a számlálóban a mátrix első oszlopa le lett cserélve az egyenlet jobb oldalára. Ha y-t számolnánk, akkor a második oszlopot kéne lecserélni):

  • Az inverz laplacehoz bontsuk parciális törtekre:

  • Együtthatókat összehasonlítva:

  • Vagyis
  • Tehát a táblázat alapján

2) [2016ZH1] Laplace transzformáció segítségével számítsuk ki x(t)-t, ha


3) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Laplace transzformációval (Nem kell megoldani!)!

Laplace trafó szabályok alkalmazása

1) [2016PZH] Számítsuk ki az alábbi jobboldali határétrékeket:

,

ha f Laplace transzformáltja,

Fourier diff-egyenlet

1) [2015ZH1] Oldjuk meg Fourier transzformáció segítségével!

2) [2016ZH1] Transzformáljuk elsőrendűvé a differenciálegyenlet Fourier transzformációval (Nem kell megoldani!)!

Fourier trafó szabályok alkalmazása

1) [2015ZH1] Számítsuk ki az Fourier transzformáltját, ha tudjuk, hogy

Disztribúciók

1) [2015ZH1] Adjuk meg és lineáris kombinációjaként az disztribúciót!

2) [2016ZH1] Számítsuk ki a reguláris disztribúcuó és a disztribúció konvolúciójának hatását a függvényre:

3) [2016ZH1] Mi az disztribúció értelemben vett egyenelet összes megoldása? (+1 miért?)

4) [2016ZH1] Adjuk meg az disztribúciót a eltolt deriváltjainak lineáris kombinációjaként!

5) [2016PZH] Legyen u az által generált reguláris disztribúció, . Számítsuk ki -t!

Wavelet trafók

1) [2015ZH1] Legyen , a mexikói kalap wavelet.

a) Legyen .

b) Legyen . Tudjuk, hogy .

2) [2016ZH1] A Poisson wavelet a következő:

a) Mutassuk meg, hogy , ha

b) Mutassuk meg, hogy

c)

3) [2016PZH] Legyen . Adjuk meg f által generált wavelet transzformáltjának Fourier transzformáltját!

Numerikus módszerek témakör

Parcdiff egyenletek (Fourier)

1) [2015ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

2) [2016ZH2] Oldjuk meg Fourier módszerrel az alábbi parciális differenciálegyenletet!

Parcdiff egyenletek (véges differenciák)

1) [2015ZH2] Véges differenciák segítségével, felosztás mellett adjuk meg az értékét, ha

2) [2016ZH2] Vázoljuk fel az alábbi feladat megoldását véges differenciák módszerével, ha , az x irányú távolság, h = 1. Mennyi lesz ?

Jordan normál-forma

1) [2016ZH2] Adjuk meg az egyenlet megoldását, ha

Nem lineáris egyenletek numerikus megoldása

1) [2015ZH2] Keressük a egyenlet megoldását. Tudjuk, hogy a gyök a [4, 5] intervallumban van.

a) A gyökhöz milyen közel kell indítani a húrmódszert, hogy az eljárás konvergáljon?

b) Használható-e a [4, 5] intervallumon az iteráció?

2) [2016ZH2] Tekintsük az egyenletet az [1, 2] intervallumon! Megoldható-e iterációval az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen? Megoldható-e húrmódszerrel az [1, 2] valamely részintervallumán? Ha igen, milyen rövid legyen?

3) [2016PZH] Az egyenlet esetében az intervallum felezés, vagy az iteráció a célravezetőbb az [1, 2] intervallumon? És a [2, 3]-n?

Lagrange multiplikátor módszer

1) [2015ZH2] Keressük meg az szélsőértékét az feltétel mellett! Vizsgáljuk meg a feltételes definitséget a kapott pontban!

2) [2016ZH2] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? (+3 pontért: Az egyik lehetséges pontban nézzük meg, hogy van-e!)

3) [2016PZH] Hol lehet feltételes szélsőértéke a függvénynek az feltétel mellett? Állapoítsuk meg a szélsőértékek jellegét!

Variáció számítás

1) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!

2) [2015ZH2] Keressük meg az funkcionálhoz tartozó extremális y függvényt!