„Elektromágneses terek alapjai - Szóbeli feladatok” változatai közötti eltérés
135 |
|||
| 1 554. sor: | 1 554. sor: | ||
}} | }} | ||
=== 135. Feladat: Elektromágneses síkhullám által gerjesztett áramsűrűség === | |||
Egy levegőben terjedő síkhullám merőlegesen esik egy végtelen kiterjedésű fémsík felületére. A síktól <math>\lambda \over 8</math> távolságra az elektromos térerősség komplex amplitúdója <math>500 {{V} \over {m}}</math>. Számítsa ki a felületi áramsűrűség nagyságát! | |||
{{Rejtett | |||
|mutatott='''Megoldás''' | |||
|szöveg= | |||
A távvezeték analógiát felhasználva a lezárás rövidzár, így <math>r = -1</math>. | |||
<math>E_2(h) = {E^+_2} \cdot {e^{j \beta (h-z)}} + {r} \cdot {{E^+_2} \cdot {e^{-j \beta (h-z)}}}</math> | |||
<math>{\beta = {{2 \pi} \over {\lambda}}} \Rightarrow E_2({{\lambda} \over {8}}) = {E^+_2} \cdot {e^{j {{ \pi } \over {4}}}} - {E^+_2} \cdot {e^{-j {{ \pi } \over {4}}}} = E^+_2 \cdot {\sqrt{2}j}</math> | |||
<math>E^+_2 = {{500 {{V}\over{m}}} \over {\sqrt{2}j}} = -353.55i {{V} \over {m}}</math> | |||
<math>|H^+_2| = {{|E^+_2|}\over{120\pi}} = 0.9378 {{A}\over{m}}</math> | |||
Mivel vezetőben <math>H_{1t} = 0</math> és <math>H_{2t} - H_{1t} = K</math> azaz <math>n \times H_2 = K</math> | |||
<math>{{K=H^+_2} \cdot {(1+(-r))} = {{2} \cdot {H^+_2}} = 1.8756 {{A}\over{m}}}</math> | |||
}} | |||
== Poynting-vektor == | == Poynting-vektor == | ||