„Fizika1 Kifejtendő gyakorlófeladatok megoldásokkal” változatai közötti eltérés
| 54. sor: | 54. sor: | ||
* Kepler 2: A vezérsugár ("bolygó és nap közötti egyenes") azonos idő alatt azonos területet súrol. Matematikailag: | * Kepler 2: A vezérsugár ("bolygó és nap közötti egyenes") azonos idő alatt azonos területet súrol. Matematikailag: | ||
** <math>\Delta \vec A =\frac1 2 \vec r \times \Delta \ vec r</math> | ** <math>\Delta \vec A =\frac1 2 \vec r \times \Delta \vec r</math> | ||
** <math>\frac {\Delta \vec A}{\Delta t} = \frac1 2 \vec r \times \vec v =const</math> | ** <math>\frac {\Delta \vec A}{\Delta t} = \frac1 2 \vec r \times \vec v =const</math> | ||
* <math>2m\frac {\Delta \vec A}{\Delta t} = \vec r \times m \vec v = \vec r \times \vec p = \vec N = const</math> | * <math>2m\frac {\Delta \vec A}{\Delta t} = \vec r \times m \vec v = \vec r \times \vec p = \vec N = const</math> | ||
== Az 1 ábrán látható 2 tömegpontból álló rendszer a tömegközéppontján átmenő függőleges tengely körül forog. Rajzolja az ábrába a szögsebesség vektort és az egyes tömegpontok pillanatnyi hely-, impulzus- és perdületvektorait! (1p) Rajzolja be és írja fel vektoriálisan a rendszer perdületét és annak megváltozását! (1p) Rajzolja meg a rendszert úgy, hogy perdülete megmaradjon, és definíciójából kiindulva egyszerűsítse erre az esetre a perdület kifejezését! (1p) == | == Az 1 ábrán látható 2 tömegpontból álló rendszer a tömegközéppontján átmenő függőleges tengely körül forog. Rajzolja az ábrába a szögsebesség vektort és az egyes tömegpontok pillanatnyi hely-, impulzus- és perdületvektorait! (1p) Rajzolja be és írja fel vektoriálisan a rendszer perdületét és annak megváltozását! (1p) Rajzolja meg a rendszert úgy, hogy perdülete megmaradjon, és definíciójából kiindulva egyszerűsítse erre az esetre a perdület kifejezését! (1p) == | ||